1
|
Tuna D, Lefrancois D, Wolański Ł, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J Chem Theory Comput 2015; 11:5758-81. [PMID: 26642989 DOI: 10.1021/acs.jctc.5b00022] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Łukasz Wolański
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504 , Strasbourg 67034, France
| | - Tadeusz Andruniów
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá de Siena , 53100 Siena, Italy
| |
Collapse
|
2
|
Kim JB, Weichman ML, Yacovitch TI, Shih C, Neumark DM. Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions. J Chem Phys 2013; 139:104301. [DOI: 10.1063/1.4820138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|