1
|
Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C. Crowding and Confinement Can Oppositely Affect Protein Stability. Chemphyschem 2018; 19:3350-3355. [DOI: 10.1002/cphc.201800857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Gary J. Pielak
- Department of Chemistry Department of Biochemistry and Biophysics University of North Carolina, Chapel Hill Chapel Hill, NC 27599-3290 USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
2
|
Sengupta B, Yadav R, Sen P. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle. Phys Chem Chem Phys 2016; 18:14350-8. [DOI: 10.1039/c6cp00452k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Bhaswati Sengupta
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Rajeev Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| |
Collapse
|
3
|
Qian Y, Qiu X, Zhong X, Zhang D, Deng Y, Yang D, Zhu S. Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Qian
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xueqing Qiu
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xiaowen Zhong
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Delang Zhang
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yonghong Deng
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Dongjie Yang
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Shiping Zhu
- Department
of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
4
|
Kuznetsova IM, Zaslavsky BY, Breydo L, Turoverov KK, Uversky VN. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 2015; 20:1377-409. [PMID: 25594347 PMCID: PMC6272634 DOI: 10.3390/molecules20011377] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022] Open
Abstract
Macromolecular crowding is known to affect protein folding, binding of small molecules, interaction with nucleic acids, enzymatic activity, protein-protein interactions, and protein aggregation. Although for a long time it was believed that the major mechanism of the action of crowded environments on structure, folding, thermodynamics, and function of a protein can be described in terms of the excluded volume effects, it is getting clear now that other factors originating from the presence of high concentrations of “inert” macromolecules in crowded solution should definitely be taken into account to draw a more complete picture of a protein in a crowded milieu. This review shows that in addition to the excluded volume effects important players of the crowded environments are viscosity, perturbed diffusion, direct physical interactions between the crowding agents and proteins, soft interactions, and, most importantly, the effects of crowders on solvent properties.
Collapse
Affiliation(s)
- Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Boris Y. Zaslavsky
- Cleveland Diagnostics, 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA; E-Mail:
| | - Leonid Breydo
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Vladimir N. Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-813-974-5816; Fax: +1-813-974-7357
| |
Collapse
|