1
|
Garg M, Sharma D, Kumar R. Analysis of the effect of 1-Allyl-3-Methylimidazolium chloride on thermodynamic stability, folding kinetics, and motional dynamics of horse cytochrome c. Biophys Chem 2022; 290:106892. [PMID: 36115294 DOI: 10.1016/j.bpc.2022.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/02/2022]
Abstract
1-allyl-3-methylimidazolium chloride (AMIMCl) acts as a potential green solvent for proteins. The present work provides a possible pathway by which the structural, kinetic, thermodynamic, and folding properties of horse cytochrome c (cyt c) are affected in green aqueous-AMIMCl systems. Analysis of the effect of AMIMCl on thermodynamic stability, refolding/unfolding kinetics, and motional dynamics of cyt c provided important information, (i) AMIMCl decreases the thermodynamic stability of reduced cyt c and also strengthens the guanidinium chloride (GdmCl)-mediated decrease in thermodynamic stability of protein, (ii) AMIMCl reduces the thermal-fluctuation of Met80-containing omega-loop of natively-folded compact state of carbonmonoxycytochrome c (MCO-state) due to polyfunctional interactions between the AMIM+ and different groups of protein, (iii) AMIMCl shifts the kinetic chevron plot, ln kobs[GdmCl] to the lower concentration of GdmCl, (iv) AMIMCl shifts the refolding and unfolding limps to vertically downwards and upwards, respectively, and (v) AMIMCl reducing the unfolding free energy estimated by both thermodynamic and kinetic analysis.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research- Institute of Microbial Technology, Sector 39A, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
2
|
Effect of imidazolium based ionic liquids on CO-association dynamics and thermodynamic stability of Ferrocytochrome c. Biophys Chem 2020; 268:106497. [PMID: 33212391 DOI: 10.1016/j.bpc.2020.106497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 11/20/2022]
Abstract
Analysis of kinetic and thermodynamic parameters measured for CO-association reaction of Ferrocytochrome c (Ferrocyt c) under variable concentrations of 1-butyl-3-methylimidazolium with varying anion ([Bmim]X) (X = Cl-, I-, Br-, HSO4-) at pH 7 revealed that the low concentration of [Bmim]X (≤0.5 M) constrains the CO-association dynamics of Ferrocyt c and typically follows the order: [Bmim]HSO4 > [Bmim]Cl > [Bmim]Br > [Bmim]I. At relatively higher concentrations (>0.5), the chaotropic action of [Bmim]+ dominates which consequently increases the thermal-fluctuations responsible to denature the protein and thus accelerates the speed of CO-association reaction. Analysis of thermal denaturation curves of Ferrocyt c measured at different concentrations of [Bmim]X revealed that the [Bmim]X decreases the thermodynamic stability of protein and typically follows the order: [Bmim]I > [Bmim]Br > [Bmim]Cl > [Bmim]CH3COO > [Bmim]HSO4, demonstrating that the effect of [Bmim]X on thermodynamic stability of protein is not in accordance to Hofmeister series effect of anions because instead of increasing the kosmotropic anion carrying [Bmim]X ([Bmim]CH3COO and [Bmim]HSO4) also decreases the thermodynamic stability of protein.
Collapse
|
3
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
4
|
Ahsan MA, Jabbari V, Imam MA, Castro E, Kim H, Curry ML, Valles-Rosales DJ, Noveron JC. Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134214. [PMID: 31514030 DOI: 10.1016/j.scitotenv.2019.134214] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 05/25/2023]
Abstract
In this report, highly crystalline and well-dispersed nano-sized nickel metal organic framework (MOFs) was decorated over graphene oxide (GO) and carbon nanotubes (CNTs) platforms to form hybrid nanocomposites. These as-synthesized hybrid nanocomposites were synthesized through a one-pot green solvothermal method. The prepared nanocomposites were characterized by SEM, TEM, EDS, XRD, FT-IR, Raman and TGA techniques. XRD analysis revealed the crystalline structure of the hybrid nanocomposites. Morphological and elemental studies also verified successful decoration of nickel-benzene dicarboxylate (Ni-BDC) MOFs over GO and CNT platforms. Chemical analysis collected through IR, and thermal analysis collected through TGA technique, illustrated the presence of all the components in the hybrid nanomaterials. Methylene blue (MB) was used as a model organic pollutant to analyze the adsorption capacity of the prepared nanocomposites. According to the findings, a strong interaction exists between the MB molecule and the developed adsorbents at which due to the synergistic effect, the hybrid nanocomposites show several times higher adsorption capacity compared to that of parent materials. This improvement can be due to several reasons: high surface area of the MOFs in the composites resulting from the smaller size of MOFs, presence of the pores formed between the MOFs and the platforms and different morphological characteristic of Ni-BDC MOFs in hybrid nanocomposites, compared to bare Ni-BDC MOFs. Furthermore, the isotherm and kinetic studies revealed that the adsorption of MB onto the newly prepared adsorbents could best be explained by the Langmuir and Pseudo-second order kinetic models. A regeneration study demonstrated the highly stable nature of the hybrid nanocomposites.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, The University of Texas at El Paso, El Paso, TX, USA.
| | - Vahid Jabbari
- Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA
| | - Muhammad A Imam
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edison Castro
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Hoejin Kim
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Michael L Curry
- Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, USA
| | - Delia J Valles-Rosales
- Department of Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Juan C Noveron
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
5
|
Kumar R, Sharma D, Jain R, Kumar S, Kumar R. Role of macromolecular crowding and salt ions on the structural-fluctuation of a highly compact configuration of carbonmonoxycytochrome c. Biophys Chem 2015; 207:61-73. [DOI: 10.1016/j.bpc.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 11/25/2022]
|