Nonose S. Temperature-Resolved Proton Transfer Reactions of Biomolecular Ions.
Mass Spectrom (Tokyo) 2020;
9:A0083. [PMID:
32547897 PMCID:
PMC7242783 DOI:
10.5702/massspectrometry.a0083]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Temperature-resolved proton transfer reactions of multiply-protonated angiotensin I, disulfide-intact and -reduced lysozyme, and ubiquitin ions to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for the proton transfer were determined from the intensities of the parent and product ions in mass spectra. Dramatic changes were observed in the distribution of product ions and the reaction rate constants. In particular, the rate constants for disulfide-intact lysozyme ions changed more drastically with the change in charge state and temperature compared to the corresponding values for disulfide-reduced ions. Proton transfer reactions were enhanced or suppressed as the result of the formation of complexes between the ions with gaseous molecules, which is related to changes in their conformation with changing.
Collapse