Ramirez-de-Arellano JM, Canales M, Magaña LF. Carbon Nanostructures Doped with Transition Metals for Pollutant Gas Adsorption Systems.
Molecules 2021;
26:5346. [PMID:
34500783 PMCID:
PMC8434604 DOI:
10.3390/molecules26175346]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
The adsorption of molecules usually increases capacity and/or strength with the doping of surfaces with transition metals; furthermore, carbon nanostructures, i.e., graphene, carbon nanotubes, fullerenes, graphdiyne, etc., have a large specific area for gas adsorption. This review focuses on the reports (experimental or theoretical) of systems using these structures decorated with transition metals for mainly pollutant molecules' adsorption. Furthermore, we aim to present the expanding application of nanomaterials on environmental problems, mainly over the last 10 years. We found a wide range of pollutant molecules investigated for adsorption in carbon nanostructures, including greenhouse gases, anticancer drugs, and chemical warfare agents, among many more.
Collapse