Li W, Yang J, Zhao L, Couch D, Marchi MS, Hansen N, Morozov AN, Mebel AM, Kaiser RI. Gas-phase preparation of azulene (C
10H
8) and naphthalene (C
10H
8)
via the reaction of the resonantly stabilized fulvenallenyl and propargyl radicals.
Chem Sci 2023;
14:9795-9805. [PMID:
37736626 PMCID:
PMC10510771 DOI:
10.1039/d3sc03231k]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
Synthetic routes to the 10π Hückel aromatic azulene (C10H8) molecule, the simplest polycyclic aromatic hydrocarbon carrying an adjacent five- and seven-membered ring, have been of fundamental importance due to the role of azulene - a structural isomer of naphthalene - as an essential molecular building block of saddle-shaped carbonaceous nanostructures such as curved nanographenes and nanoribbons. Here, we report on the very first gas phase preparation of azulene by probing the gas-phase reaction between two resonantly stabilized radicals, fulvenallenyl and propargyl , in a molecular beam through isomer-resolved vacuum ultraviolet photoionization mass spectrometry. Augmented by electronic structure calculations, the novel Fulvenallenyl Addition Cyclization Aromatization (FACA) reaction mechanism affords a versatile concept for introducing the azulene moiety into polycyclic aromatic systems thus facilitating an understanding of barrierless molecular mass growth processes of saddle-shaped aromatics and eventually carbonaceous nanoparticles (soot, interstellar grains) in our universe.
Collapse