Firme CL. Revisiting the mechanism for the polar hydrochlorination of alkenes.
J Mol Model 2019;
25:128. [PMID:
31025210 DOI:
10.1007/s00894-019-4004-9]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
Various kinetic studies of the addition of hydrogen halides to alkenes were carried out in the 1930s, 1940s, and 1970s. Since then, there have been theoretical analyses of several aspects of alkene reactivity and regioselectivity during hydrohalogenation. A few works have studied the influence of the hydrogen halide when it is acting as a catalyst (as well as a reactant) under third-order kinetics. However, there has not been any theoretical investigation of the possibility that there is a carbocation intermediate in the contact ion pair. Therefore, we revisited the mechanistic aspects of this reaction at different levels of theory and using IRC (in a gaseous medium) and ONIOM (with an explicit solvent model). We found that (i) there is only one transition state (one energy barrier) for all possible reaction mechanisms in an apolar medium, (ii) there is no carbocation intermediate when a hydrohalogenation reaction is performed in apolar and polar protic media, (iii) hydrochlorination in apolar and polar protic media occurs through an asynchronous concerted mechanism (not through the stepwise mechanism described in undergraduate/graduate literature), and (iv) there are three possible competing mechanisms (with second-, third-, and fourth-order kinetics) in an apolar medium; the mechanism with fourth-order kinetics has the smallest energy barrier, while that with second-order kinetics (a mechanism in which the hydrogen halide does not also act as a catalyst) has the highest energy barrier. Graphical abstract Hydrochlorination of 2,3-dimethylbutene through an asynchronous concerted mechanism.
Collapse