1
|
Einsele R, Mitrić R. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB. J Chem Theory Comput 2024. [PMID: 39051619 DOI: 10.1021/acs.jctc.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We introduce a novel methodology for simulating the excited-state dynamics of extensive molecular aggregates in the framework of the long-range corrected time-dependent density-functional tight-binding fragment molecular orbital method (FMO-LC-TDDFTB) combined with the mean-field Ehrenfest method. The electronic structure of the system is described in a quasi-diabatic basis composed of locally excited and charge-transfer states of all fragments. In order to carry out nonadiabatic molecular dynamics simulations, we derive and implement the excited-state gradients of the locally excited and charge-transfer states. Subsequently, the accuracy of the analytical excited-state gradients is evaluated. The applicability to the simulation of exciton transport in organic semiconductors is illustrated on a large cluster of anthracene molecules. Additionally, nonadiabatic molecular dynamics simulations of a model system of benzothieno-benzothiophene molecules highlight the method's utility in studying charge-transfer dynamics in organic materials. Our new methodology will facilitate the investigation of excitonic transfer in extensive biological systems, nanomaterials, and other complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| |
Collapse
|
2
|
Liu S, Peng J, Bao P, Shi Q, Lan Z. Ultrafast Excited-State Energy Transfer in Phenylene Ethynylene Dendrimer: Quantum Dynamics with the Tensor Network Method. J Phys Chem A 2024. [PMID: 39047261 DOI: 10.1021/acs.jpca.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Photoinduced excited-state energy transfer (EET) processes play an important role in solar energy conversions. Owing to their excellent photoharvesting and exciton-transport properties, phenylene ethynylene (PE) dendrimers display great potential for improving the efficiency of solar cells. In this work, we investigated the intramolecular EET dynamics in a dendrimer composed of two linear PE units (2-ring and 3-ring) using a fully quantum description based on the tensor network method. We first constructed a diabatic model Hamiltonian based on the electronic structure calculations. Using this diabatic vibronic coupling model, we tried to obtain the main features of the EET dynamics in terms of the several diabatic models with different numbers of vibrational modes (from 4 modes to 129 modes) and to explore the corresponding vibronic coupling interactions. The results show that the EET in this PE dendrimer is ultrafast. Four modes of A' symmetry play dominant roles in the dynamics; the remaining 86 modes of A' symmetry can dampen the electronic coherence; and the modes of A″ symmetry do not exhibit significant influence on the EET process. Overall, the first-order intrastate vibronic coupling terms show the dominant role in the EET dynamics, while the second-order intrastate vibronic coupling terms cause damping of the electronic coherence and slow down the overall EET process. This work provides a microscopic understanding of the EET dynamics in PE dendrimers.
Collapse
Affiliation(s)
- Sisi Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Haghshenas H, Spano FC. Impact of Local and Nonlocal Vibronic Coupling on the Absorption and Emission Spectra of J- and H-Dimers. J Chem Theory Comput 2024; 20:4790-4803. [PMID: 38768310 DOI: 10.1021/acs.jctc.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The impact of exciton-vibrational (EV) coupling involving low-energy ("slow") intermolecular vibrations and higher-energy ("fast") intramolecular vibrations on the absorption and emission spectra of H- and J-dimers is studied theoretically for a pair of chromophores with excitonic coupling dominated by transition dipole-dipole coupling, JC. Exact quantum-mechanical solutions based on a Frenkel-Holstein-Peierls Hamiltonian reveal a fascinating interplay between the two coupling sources in determining the spectral line widths, Stoke shifts and radiative decay rates. It is shown that the ratio rules derived from the vibronic progression of the fast mode in molecular dimers remain valid under the influence of slow-mode EV coupling under most conditions. However, a highly unusual aggregate behavior occurs when the product of local and nonlocal couplings, |gLgNL|, exceeds 2ℏωs|JC|, where ℏωs is the energy of the slow mode. In this regime and when gL and gNL are in-phase, an H-dimer (JC > 0) becomes strongly emissive and can even be super-radiant, while a J-dimer (JC < 0) with out-of-phase gL and gNL values becomes subradiant. Such behaviors are in marked contrast to the predictions of Kasha theory and demonstrate the richness of the photophysical behavior resulting from EV coupling involving inter- and intramolecular vibrations.
Collapse
Affiliation(s)
- Hamed Haghshenas
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Brey D, Burghardt I. Coherent Transient Localization Mechanism of Interchain Exciton Transport in Regioregular P3HT: A Quantum-Dynamical Study. J Phys Chem Lett 2024; 15:1836-1845. [PMID: 38334949 DOI: 10.1021/acs.jpclett.3c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transient localization has been proposed as a transport mechanism in organic materials, for both charge carriers and excitons. Here, we characterize a quantum coherent transient localization mechanism using full quantum simulations of an H-aggregated model system representative of regioregular poly(3-hexylthiophene) (rrP3HT). A Frenkel-Holstein Hamiltonian parametrized from first principles is considered, including local high-frequency modes and anharmonic, site-correlated interchain modes. Quantum-dynamical calculations are carried out using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a 13-site system with 195 vibrational modes, under periodic boundary conditions. It is shown that temporary localization of exciton polarons alternates with resonant transfer driven by interchain modes. While the transport process is mainly determined by exciton-polarons at the low-energy band edge, persistent coupling with the excitonic manifold is observed, giving rise to a nonadiabatic excitonic flux. This elementary transport mechanism remains preserved for limited static disorder and gives way to Anderson localization when the static disorder becomes dominant.
Collapse
Affiliation(s)
- Dominik Brey
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Mondelo-Martell M, Brey D, Burghardt I. Quantum dynamical study of inter-chain exciton transport in a regioregular P3HT model system at finite temperature: HJ vs. H-aggregate models. J Chem Phys 2022; 157:094108. [DOI: 10.1063/5.0104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on quantum dynamical simulations of inter-chain exciton transport in a model of regioregular poly(3-hexylthiophene), rr-P3HT, at finite temperature, using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a system of up to 63 electronic states and 180 vibrational modes. A Frenkel Hamiltonian of HJ aggregate type is used, along with a reduced H-aggregate representation; electron-phonon coupling includes local high-frequency modes as well as anharmonic intermolecular modes. The latter are operative in mediating inter-chain transport, by a mechanism of transient localization type. Strikingly, this mechanism is found to be of quantum coherent character and involves non-adiabatic effects. Using periodic boundary conditions, a normal diffusion regime is identified from the exciton mean-squared displacement, apart from early-time transients. Diffusion coefficients are found to be of the order of 3 x 10-3 cm2/s, showing a non-monotonous increase with temperature.
Collapse
Affiliation(s)
- Manel Mondelo-Martell
- Institut für Physikalische u. Theoretische Chemie, Goethe-Universitat Frankfurt am Main Institut fur Physikalische und Theoretische Chemie, Germany
| | | | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Germany
| |
Collapse
|
6
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
7
|
Binder R, Bonfanti M, Lauvergnat D, Burghardt I. First-principles description of intra-chain exciton migration in an oligo(para-phenylene vinylene) chain. I. Generalized Frenkel-Holstein Hamiltonian. J Chem Phys 2020; 152:204119. [PMID: 32486686 DOI: 10.1063/5.0004510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A generalized Frenkel-Holstein Hamiltonian is constructed to describe exciton migration in oligo(para-phenylene vinylene) chains, based on excited state electronic structure data for an oligomer comprising 20 monomer units (OPV-20). Time-dependent density functional theory calculations using the ωB97XD hybrid functional are employed in conjunction with a transition density analysis to study the low-lying singlet excitations and demonstrate that these can be characterized to a good approximation as a Frenkel exciton manifold. Based on these findings, we employ the analytic mapping procedure of Binder et al. [J. Chem. Phys. 141, 014101 (2014)] to translate one-dimensional (1D) and two-dimensional (2D) potential energy surface (PES) scans to a fully anharmonic, generalized Frenkel-Holstein (FH) Hamiltonian. A 1D PES scan is carried out for intra-ring quinoid distortion modes, while 2D PES scans are performed for the anharmonically coupled inter-monomer torsional and vinylene bridge bond length alternation modes. The kinetic energy is constructed in curvilinear coordinates by an exact numerical procedure, using the TNUM Fortran code. As a result, a fully molecular-based, generalized FH Hamiltonian is obtained, which is subsequently employed for quantum exciton dynamics simulations, as shown in Paper II [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)].
Collapse
Affiliation(s)
- Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Matteo Bonfanti
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
8
|
Zheng J, Peng J, Xie Y, Long Y, Ning X, Lan Z. Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian. Phys Chem Chem Phys 2020; 22:18192-18204. [DOI: 10.1039/d0cp00648c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exciton dynamics in one-dimensional stacked PBI (Perylene Bisimide) aggregates was studied with SQC-MM dynamics (Symmetrical Quasiclassical Dynamics based on the Meyer–Miller mapping Hamiltonian).
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Jiawei Peng
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yu Xie
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yunze Long
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Zhenggang Lan
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| |
Collapse
|
9
|
Kurashige Y. Matrix product state formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 2018; 149:194114. [DOI: 10.1063/1.5051498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Jiang S, Xie Y, Lan Z. The role of the charge-transfer states in the ultrafast excitonic dynamics of the DTDCTB dimers embedded in a crystal environment. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Liang R, Cotton SJ, Binder R, Hegger R, Burghardt I, Miller WH. The symmetrical quasi-classical approach to electronically nonadiabatic dynamics applied to ultrafast exciton migration processes in semiconducting polymers. J Chem Phys 2018; 149:044101. [DOI: 10.1063/1.5037815] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley,
California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
| | - Stephen J. Cotton
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley,
California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
| | - Robert Binder
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main,
Germany
| | - Rainer Hegger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main,
Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main,
Germany
| | - William H. Miller
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley,
California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
| |
Collapse
|
12
|
Binder R, Lauvergnat D, Burghardt I. Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study. PHYSICAL REVIEW LETTERS 2018; 120:227401. [PMID: 29906150 DOI: 10.1103/physrevlett.120.227401] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
Collapse
Affiliation(s)
- Robert Binder
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - David Lauvergnat
- Laboratoire de Chimie Physique, Université Paris-Sud, UMR 8000, 91405 Orsay, France
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| |
Collapse
|
13
|
Hestand NJ, Spano FC. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem Rev 2018; 118:7069-7163. [PMID: 29664617 DOI: 10.1021/acs.chemrev.7b00581] [Citation(s) in RCA: 764] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electronic excited states of molecular aggregates and their photophysical signatures have long fascinated spectroscopists and theoreticians alike since the advent of Frenkel exciton theory almost 90 years ago. The influence of molecular packing on basic optical probes like absorption and photoluminescence was originally worked out by Kasha for aggregates dominated by Coulombic intermolecular interactions, eventually leading to the classification of J- and H-aggregates. This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated. An assortment of packing geometries is considered from the humble molecular dimer to more exotic structures including linear and bent aggregates, two-dimensional herringbone and "HJ" aggregates, and chiral aggregates. The interplay between long-range Coulomb coupling and short-range charge-transfer-mediated coupling strongly depends on the aggregate architecture leading to a wide array of photophysical behaviors.
Collapse
Affiliation(s)
- Nicholas J Hestand
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Frank C Spano
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
14
|
Comparison of the results of a mean-field mixed quantum/classical method with full quantum predictions for nonadiabatic dynamics: application to the $$\pi \pi ^*/n\pi ^*$$ π π ∗ / n π ∗ decay of thymine. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2218-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|