Förster A, Visscher L. Quasiparticle Self-Consistent
GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems.
J Chem Theory Comput 2022;
18:6779-6793. [PMID:
36201788 PMCID:
PMC9648197 DOI:
10.1021/acs.jctc.2c00531]
[Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GW-Bethe–Salpeter equation
(BSE) method
is promising for calculating the low-lying excitonic states of molecular
systems. However, so far it has only been applied to rather small
molecules and in the commonly implemented diagonal approximations
to the electronic self-energy, it depends on a mean-field starting
point. We describe here an implementation of the self-consistent and
starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on
large molecules. We herein show that eigenvalue-only self-consistency
can lead to an unfaithful description of some excitonic states for
chlorophyll dimers while the qsGW-BSE vertical excitation
energies (VEEs) are in excellent agreement with spectroscopic experiments
for chlorophyll monomers and dimers measured in the gas phase. Furthermore,
VEEs from time-dependent density functional theory calculations tend
to disagree with experimental values and using different range-separated
hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use
the new qsGW-BSE implementation to calculate the
lowest excitation energies of the six chromophores of the photosystem
II (PSII) reaction center (RC) with nearly 2000 correlated electrons.
Using more than 11,000 (6000) basis functions, the calculation could
be completed in less than 5 (2) days on a single modern compute node.
In agreement with previous TD-DFT calculations using RSH kernels on
models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters
in the low-energy spectrum of the hexameric complex. Earlier works
with RSH kernels have demonstrated that the protein environment facilitates
the experimentally observed interchromophoric charge transfer. Therefore,
future research will need to combine correlation effects beyond TD-DFT
with an explicit treatment of environmental electrostatics.
Collapse