1
|
Schlawin F. Two-photon absorption cross sections of pulsed entangled beams. J Chem Phys 2024; 160:144117. [PMID: 38619059 DOI: 10.1063/5.0196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.
Collapse
Affiliation(s)
- Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
2
|
Triana-Arango F, Ramírez-Alarcón R, Ramos-Ortiz G. Entangled Two-Photon Absorption in Transmission-Based Experiments: Deleterious Effects from Linear Optical Losses. J Phys Chem A 2024; 128:2210-2219. [PMID: 38446597 DOI: 10.1021/acs.jpca.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Recently different experimental schemes have been proposed to study the elusive phenomenon of entangled two-photon absorption (ETPA) in nonlinear materials. The attempts to detect ETPA using transmission-based schemes have led to results whose validity is currently under debate because the ETPA signal can be corrupted or emulated by artifacts associated with linear optical losses. The present work addresses the issue of linear losses and the corresponding artifacts in transmission-based ETPA experiments through a new approach that exploits the properties of a Hong-Ou-Mandel (HOM) interferogram. Here, we analyze solutions of rhodamine B (RhB), commonly used as a model of a nonlinear medium in ETPA studies. Then, by using the HOM interferometer as a sensing device, we first demonstrate the equivalence of the standard transmission vs pump power ETPA experiments, presented in many reports, with our novel approach of transmission vs two-photon temporal delay. Second, a detailed study of the effects of optical losses, unrelated to ETPA, over the HOM interferogram is carried out by: (1) characterizing RhB in solutions prepared with different solvents and (2) considering scattering losses introduced by silica nanoparticles used as a controlled linear loss mechanism. Our results clearly expose the deleterious effects of linear optical losses over the ETPA signal when standard transmission experiments are employed and show how, by using the HOM interferogram as a sensing device, it is possible to detect the presence of such losses. Finally, once we showed that the HOM interferogram discriminates properly linear losses, our study also reveals that under the specific experimental conditions considered here, which are the same as those employed in many reported works, the ETPA was not unequivocally detected.
Collapse
Affiliation(s)
- Freiman Triana-Arango
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| | | | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| |
Collapse
|
3
|
Peřina J, Thapliyal K, Haderka O, Michálek V, Machulka R. Generalized sub-Poissonian states of two-beam fields. OPTICS EXPRESS 2024; 32:537-550. [PMID: 38175081 DOI: 10.1364/oe.511065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Two-beam states obtained by partial photon-number-resolving detection in one beam of a multi-mode twin beam are experimentally investigated using an intensified CCD camera. In these states, sub-Poissonian photon-number distributions in one beam are accompanied by sub-shot-noise fluctuations in the photon-number difference of both beams. Multi-mode character of the twin beam implying the beam nearly Poissonian statistics is critical for reaching sub-Poissonian photon-number distributions, which contrasts with the use of a two-mode squeezed vacuum state. Relative intensities of both nonclassical effects as they depend on the generation conditions are investigated both theoretically and experimentally using photon-number distributions of these fields. Fano factor, noise-reduction parameter, local and global nonclassicality depths, degree of photon-number coherence, mutual entropy as a non-Gaussianity quantifier, and negative quasi-distributions of integrated intensities are used to characterize these fields. Spatial photon-pair correlations as means for improving the field properties are employed. These states are appealing for quantum metrology and imaging including the virtual-state entangled-photon spectroscopy.
Collapse
|
4
|
Corona-Aquino S, Calderón-Losada O, Li-Gómez MY, Cruz-Ramirez H, Álvarez-Venicio V, Carreón-Castro MDP, de J León-Montiel R, U'Ren AB. Experimental Study of the Validity of Entangled Two-Photon Absorption Measurements in Organic Compounds. J Phys Chem A 2022; 126:2185-2195. [PMID: 35383460 DOI: 10.1021/acs.jpca.2c00720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally reported ETPA cross sections of organic molecules obtained by a number of groups. In this work, we provide a thorough experimental study of ETPA in the organic molecules Rhodamine B (RhB) and zinc tetraphenylporphirin (ZnTPP). Our contribution is 3-fold: first, we reproduce previous results from other groups; second, we on the one hand determine the effects of different temporal correlations─introduced as a controllable temporal delay between the signal and idler photons to be absorbed─on the strength of the ETPA signal, and on the other hand, we introduce two concurrent and equivalent detection systems with and without the sample in place as a useful experimental check; third, we introduce, and apply to our data, a novel method to quantify the ETPA rate based on taking into account the full photon-pair behavior rather than focusing on singles or coincidence counts independently. Through this experimental setup we find that, surprisingly, the purported ETPA signal is not suppressed for a temporal delay much greater than the characteristic photon-pair temporal correlation time. While our results reproduce the previous findings from other authors, our full analysis indicates that the signal observed is not actually due to ETPA but simply to linear losses. Interestingly, for higher RhB concentrations, we find a two-photon signal that, contrary to expectations, likewise does not correspond to ETPA.
Collapse
Affiliation(s)
- Samuel Corona-Aquino
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Omar Calderón-Losada
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Mayte Y Li-Gómez
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Hector Cruz-Ramirez
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Violeta Álvarez-Venicio
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - María Del Pilar Carreón-Castro
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Roberto de J León-Montiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Alfred B U'Ren
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| |
Collapse
|
5
|
Eshun A, Varnavski O, Villabona-Monsalve JP, Burdick RK, Goodson T. Entangled Photon Spectroscopy. Acc Chem Res 2022; 55:991-1003. [PMID: 35312287 DOI: 10.1021/acs.accounts.1c00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photon-number squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications.In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules.The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 107 photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well.From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.
Collapse
Affiliation(s)
- Audrey Eshun
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Juan P. Villabona-Monsalve
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Ryan K. Burdick
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| |
Collapse
|
6
|
Gieysztor M, Misiaszek M, der Veen JV, Gawlik W, Jelezko F, Kolenderski P. Interaction of a heralded single photon with nitrogen-vacancy centers in a diamond. OPTICS EXPRESS 2021; 29:564-570. [PMID: 33726289 DOI: 10.1364/oe.409882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
A simple, room-temperature, cavity- and vacuum-free interface for a photon-matter interaction is implemented. In the experiment, a heralded single photon generated by the process of spontaneous parametric down-conversion is absorbed by an ensemble of nitrogen-vacancy color centers. The broad absorption spectrum associated with the phonon sideband solves the mismatch problem of a narrow absorption bandwidth in a typical atomic medium and broadband spectrum of quantum light. The heralded single photon source is tunable in the spectral range 452 - 575 nm, which overlaps well with the absorption spectrum of nitrogen-vacancy centers.
Collapse
|
7
|
León-Montiel RDJ, Svozilík J, Torres JP, U'Ren AB. Temperature-Controlled Entangled-Photon Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2019; 123:023601. [PMID: 31386532 DOI: 10.1103/physrevlett.123.023601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 06/10/2023]
Abstract
Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique has remained elusive, mainly because of two major difficulties: first, the need to perform multiple experiments with two-photon states bearing different temporal correlations, which translates into the necessity to have at the experimenter's disposal tens, if not hundreds, of sources of entangled photons; second, the need to have a priori knowledge of the absorbing medium's lowest-lying intermediate energy level. In this work, we put forward a simple experimental scheme that successfully overcomes these two limitations. By making use of a temperature-controlled entangled-photon source, which allows the tuning of the central frequencies of the absorbed photons, we show that the TPA signal, measured as a function of the temperature of the nonlinear crystal that generates the paired photons, and a controllable delay between them, carries all information about the electronic level structure of the absorbing medium, which can be revealed by a simple Fourier transformation.
Collapse
Affiliation(s)
- Roberto de J León-Montiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mx., México
| | - Jiří Svozilík
- Yachay Tech University, School of Physical Sciences & Nanotechnology, 100119, Urcuquí, Ecuador
- Joint Laboratory of Optics of Palacký University and Institute of Physics of CAS, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Juan P Torres
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
- Department of Signal Theory and Communications, Campus Nord D3, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
| | - Alfred B U'Ren
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mx., México
| |
Collapse
|