1
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
2
|
Krapivin VB, Luzhkov VB. Molecular modeling of the conformational dynamics of nitroxide derivatives of chitosan in aqueous solution. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Sen' VD, Golubev VA, Shilov GV, Chernyak AV, Kurmaz VA, Luzhkov VB. Oxygen Atom Transfer in the Oxidation of Dimethyl Sulfoxide by Oxoammonium Cations. J Org Chem 2021; 86:3176-3185. [PMID: 33449678 DOI: 10.1021/acs.joc.0c02526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic oxoammonium salts and DMSO are known as important reagents for their diverse and unique reactivity. In the present work, we have studied the reaction of six- and five-membered oxoammonium salts with DMSO. The reaction includes ∼100% selective transfer of the O atom from the >N+═O group to the S atom of DMSO and structural rearrangement of the remaining cationic framework, leading to the formation of hydrolytically unstable iminium salts. The logarithms of the bimolecular rate constants k of the reaction correlated linearly with the reduction potentials E>N+═O/>N-O•, a relationship known for other electrophile-nucleophile combinations. The kinetic data and results of the DFT calculations allow for the suggestion that the studied process proceeds via the prereactive charge-transfer complex >N+═O···S (O)Me2 and its direct concerted rearrangement to the iminium salts. An alternative mechanism that includes intermediate steps with discrete nitrenium cations can be ruled out on the basis of product analysis and DFT computations. The obtained results allow a deeper understanding of the redox chemistry of a pair of nitroxide radicals-oxoammonium cations.
Collapse
Affiliation(s)
- Vasily D Sen'
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Valery A Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Gennadii V Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Alexander V Chernyak
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Vladimir A Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Victor B Luzhkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation.,Department of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia Federation
| |
Collapse
|
4
|
Luzhkov VB. Treatment of the Conformational Contributions in Quantum Mechanical Calculations of the Redox Potentials of Nitroxyl Radicals. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420050155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|