1
|
Weber DK, Veglia G. A theoretical assessment of structure determination of multi-span membrane proteins by oriented sample solid-state NMR spectroscopy. Aust J Chem 2020; 73:246-251. [PMID: 33162560 DOI: 10.1071/ch19307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oriented sample solid state NMR (OS-ssNMR) spectroscopy allows direct determination of the structure and topology of membrane proteins reconstituted into aligned lipid bilayers. While OS-ssNMR theoretically has no upper size limit, its application to multi-span membrane proteins has not been established since most studies have been restricted to single or dual span proteins and peptides. Here, we present a critical assessment of the application of this method to multi-span membrane proteins. We used molecular dynamics simulations to back-calculate [15N-1H] separated local field (SLF) spectra from a G protein-coupled receptor (GPCR) and show that fully resolved spectra can be obtained theoretically for a multi-span membrane protein with currently achievable resonance linewidths.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
3
|
Solution NMR Spectroscopy for the Determination of Structures of Membrane Proteins in a Lipid Environment. Methods Mol Biol 2019. [PMID: 31218634 DOI: 10.1007/978-1-4939-9512-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
NMR spectroscopy has harnessed the recent technical advances to emerge as a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or cell-free expression and purification of a suitably sized membrane protein has been achieved, then NMR offers a combination of several versatile strategies, for example choice of appropriate deuterated or nondeuterated detergents, temperature, and ionic strength; isotope labeling with 2H, 13C, 15N, with or without protonation of Ile (δ1), Leu, and Val methyl protons; combinatorial labeling or unlabeling of specific amino acids; TROSY based-, nonuniform sampling (NUS) based-, and other NMR experiments; measurement of residual dipolar couplings using stretched polyacrylamide gels or DNA nanotubes; spin labeling and paramagnetic relaxation enhancements (PRE). Strategic combinations of these advancements together with availability of highly sensitive cryogenically cooled-probes equipped high-field NMR spectrometers (up to 1 GHz 1H frequency) have allowed the perseverant investigator to successfully overcome several of the conventional pitfalls associated with the NMR technique and membrane proteins, viz., low sensitivity, poor sample stability, spectral crowding, and a limited number of NOEs and other constraints for structure calculations. This has resulted in an unprecedented growth in the number of successfully determined NMR structures of large and complex membrane proteins over the last two decades, and this technique now holds great promise for the structure determination of an ever larger body of membrane proteins.
Collapse
|
4
|
Gopinath T, Mote KR, Veglia G. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. JOURNAL OF BIOMOLECULAR NMR 2015; 62:53-61. [PMID: 25749871 PMCID: PMC4981477 DOI: 10.1007/s10858-015-9916-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Collapse
Affiliation(s)
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry and University of Minnesota, Minneapolis, MN 55455
- Corresponding Author. Gianluigi Veglia, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, Phone: (612) 625-0758, Fax: (612) 625-2163,
| |
Collapse
|
5
|
Gopinath T, Mote KR, Veglia G. Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:50-68. [PMID: 24160761 PMCID: PMC3850070 DOI: 10.1016/j.pnmrs.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/16/2013] [Indexed: 05/19/2023]
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein preparations that are uniformly oriented (mechanically or magnetically) so that anisotropic NMR parameters, such as dipolar and chemical shift interactions, can be measured to determine structure and orientation of membrane proteins in lipid bilayers. Traditional sample preparations involving mechanically aligned lipids often result in short relaxation times which broaden the (15)N resonances and encumber the manipulation of nuclear spin coherences. The introduction of lipid bicelles as membrane mimicking systems has changed this scenario, and the more favorable relaxation properties of membrane protein (15)N and (13)C resonances make it possible to develop new, more elaborate pulse sequences for higher spectral resolution and sensitivity. Here, we describe our recent progress in the optimization of O-ssNMR pulse sequences. We explain the theory behind these experiments, demonstrate their application to small and medium size proteins, and describe the technical details for setting up these new experiments on the new generation of NMR spectrometers.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kaustubh R. Mote
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
6
|
Eggimann BL, Vostrikov VV, Veglia G, Siepmann JI. Modeling helical proteins using residual dipolar couplings, sparse long-range distance constraints and a simple residue-based force field. Theor Chem Acc 2013; 132:1388. [PMID: 24639619 DOI: 10.1007/s00214-013-1388-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a fast and simple protocol to obtain moderate-resolution backbone structures of helical proteins. This approach utilizes a combination of sparse backbone NMR data (residual dipolar couplings and paramagnetic relaxation enhancements) or EPR data with a residue-based force field and Monte Carlo/simulated annealing protocol to explore the folding energy landscape of helical proteins. By using only backbone NMR data, which are relatively easy to collect and analyze, and strategically placed spin relaxation probes, we show that it is possible to obtain protein structures with correct helical topology and backbone RMS deviations well below 4 Å. This approach offers promising alternatives for the structural determination of proteins in which nuclear Overha-user effect data are difficult or impossible to assign and produces initial models that will speed up the high-resolution structure determination by NMR spectroscopy.
Collapse
Affiliation(s)
- Becky L Eggimann
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Vitaly V Vostrikov
- Molecular Biology and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - J Ilja Siepmann
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Arora A. Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Methods Mol Biol 2013; 974:389-413. [PMID: 23404285 DOI: 10.1007/978-1-62703-275-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several recent advancements have transformed solution NMR spectroscopy into a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or cell-free expression and purification of a suitably sized membrane protein has been achieved, then NMR offers a combination of several versatile strategies, for example, choice of appropriate deuterated or non-deuterated detergents, temperature, and ionic strength; isotope labelling with (2)H, (13)C, (15)N, with or without protonation of Ile (δ1), Leu, and Val methyl protons; combinatorial labelling of specific amino acids; transverse relaxation-optimized NMR spectroscopy-based, Nonuniform sampling-based, and other NMR experiments; measurement of residual dipolar couplings using stretched polyacrylamide gels or DNA nanotubes; and spin-labelling and paramagnetic relaxation enhancements. Strategic combinations of these advancements together with availability of highly sensitive cryogenically cooled probes equipped high-field NMR spectrometers (up to 1 GHz (1)H frequency) have allowed the perseverant investigator to successfully overcome several of the conventional pitfalls associated with the NMR technique and membrane proteins, viz., low sensitivity, poor sample stability, spectral crowding, and a limited number of NOEs and other constraints for structure calculations. This has resulted in an unprecedented growth in the number of successfully determined NMR structures of large and complex membrane proteins, and this technique now holds great promise for the structure determination of an ever larger body of membrane proteins.
Collapse
Affiliation(s)
- Ashish Arora
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
8
|
Hohlweg W, Kosol S, Zangger K. Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 2012; 13:267-79. [PMID: 22044140 PMCID: PMC3394173 DOI: 10.2174/138920312800785049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.
Collapse
Affiliation(s)
| | | | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
9
|
Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G. Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 2011; 133:2232-41. [PMID: 21287984 DOI: 10.1021/ja109080t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
10
|
Montaville P, Jamin N. Determination of membrane protein structures using solution and solid-state NMR. Methods Mol Biol 2010; 654:261-282. [PMID: 20665271 DOI: 10.1007/978-1-60761-762-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
NMR is an essential tool to characterize the structure, dynamics, and interactions of biomolecules at an atomic level. Its application to membrane protein (MP) structure determination is challenging and currently an active and rapidly developing field. Main difficulties are the low sensitivity of the technique, the size limitation, and the intrinsic motional properties of the system under investigation. Solution and solid-state NMR (ssNMR) have common and own specific requirements. Solution NMR requires a careful choice of the detergent, elaborated stable isotope labelling schemes to overcome signal overlaps and to collect distance restraints. Excessive spectra crowding hampered large MP structure determination by ssNMR, and so far only high resolution structure of small or fragments of MP have been determined. However, ssNMR provides the unique opportunity to obtain atomic level information of MP in phospholipid bilayers such as orientation of the protein in the membrane. Specific and careful sample preparations are required in combination with uniformly and partially labelled protein for ssNMR spectra assignment. Distance restraints measurements benefit from methodologies currently developed for small soluble proteins in micro-crystalline state.Recent advances in the field increased the releasing rate of high resolution MP structures, providing unprecedented structural and dynamics information making NMR a powerful tool for structural and functional membrane protein studies.
Collapse
|
11
|
Shi L, Cembran A, Gao J, Veglia G. Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 2009; 96:3648-62. [PMID: 19413970 DOI: 10.1016/j.bpj.2009.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 02/03/2009] [Accepted: 02/12/2009] [Indexed: 02/04/2023] Open
Abstract
We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 +/- 6 degrees and azymuthal angles of 66 +/- 22 degrees, in reasonable accord with angles determined experimentally (23 +/- 2 degrees and 50 +/- 4 degrees, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both (15)N chemical shift anisotropy and (1)H/(15)N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
12
|
Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 2009; 106:10165-70. [PMID: 19509339 DOI: 10.1073/pnas.0904290106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholamban (PLN) is an essential regulator of cardiac muscle contractility. The homopentameric assembly of PLN is the reservoir for active monomers that, upon deoligomerization form 1:1 complexes with the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), thus modulating the rate of calcium uptake. In lipid bilayers and micelles, monomeric PLN exists in equilibrium between a bent (or resting) T state and a more dynamic (or active) R state. Here, we report the high-resolution structure and topology of the T state of a monomeric PLN mutant in lipid bilayers, using a hybrid of solution and solid-state NMR restraints together with molecular dynamics simulations in explicit lipid environments. Unlike the previous structural ensemble determined in micelles, this approach gives a complete picture of the PLN monomer structure in a lipid bilayer. This hybrid ensemble exemplifies the tilt, rotation, and depth of membrane insertion, revealing the interaction with the lipids for all protein domains. The N-terminal amphipathic helical domain Ia (residues 1-16) rests on the surface of the lipid membrane with the hydrophobic face of domain Ia embedded in the membrane bilayer interior. The helix comprised of domain Ib (residues 23-30) and transmembrane domain II (residues 31-52) traverses the bilayer with a tilt angle of approximately 24 degrees . The specific interactions between PLN and lipid membranes may represent an additional regulatory element of its inhibitory function. We propose this hybrid method for the simultaneous determination of structure and topology for membrane proteins with compact folds or proteins whose spatial arrangement is dictated by their specific interactions with lipid bilayers.
Collapse
|
13
|
Chen K, Tjandra N. Top-down approach in protein RDC data analysis: de novo estimation of the alignment tensor. JOURNAL OF BIOMOLECULAR NMR 2007; 38:303-13. [PMID: 17593526 DOI: 10.1007/s10858-007-9168-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/18/2007] [Indexed: 05/16/2023]
Abstract
In solution NMR spectroscopy the residual dipolar coupling (RDC) is invaluable in improving both the precision and accuracy of NMR structures during their structural refinement. The RDC also provides a potential to determine protein structure de novo. These procedures are only effective when an accurate estimate of the alignment tensor has already been made. Here we present a top-down approach, starting from the secondary structure elements and finishing at the residue level, for RDC data analysis in order to obtain a better estimate of the alignment tensor. Using only the RDCs from N-H bonds of residues in alpha-helices and CA-CO bonds in beta-strands, we are able to determine the offset and the approximate amplitude of the RDC modulation-curve for each secondary structure element, which are subsequently used as targets for global minimization. The alignment order parameters and the orientation of the major principal axis of individual helix or strand, with respect to the alignment frame, can be determined in each of the eight quadrants of a sphere. The following minimization against RDC of all residues within the helix or strand segment can be carried out with fixed alignment order parameters to improve the accuracy of the orientation. For a helical protein Bax, the three components A(xx), A(yy) and A(zz), of the alignment order can be determined with this method in average to within 2.3% deviation from the values calculated with the available atomic coordinates. Similarly for beta-sheet protein Ubiquitin they agree in average to within 8.5%. The larger discrepancy in beta-strand parameters comes from both the diversity of the beta-sheet structure and the lower precision of CA-CO RDCs. This top-down approach is a robust method for alignment tensor estimation and also holds a promise for providing a protein topological fold using limited sets of RDCs.
Collapse
Affiliation(s)
- Kang Chen
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 3503, Bethesda, MD 20892, USA
| | | |
Collapse
|
14
|
Respondek M, Madl T, Göbl C, Golser R, Zangger K. Mapping the orientation of helices in micelle-bound peptides by paramagnetic relaxation waves. J Am Chem Soc 2007; 129:5228-34. [PMID: 17397158 DOI: 10.1021/ja069004f] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many antimicrobial peptides form alpha-helices when bound to a membrane. In addition, around 80% of residues in membrane-bound proteins are found in alpha-helical regions. The orientation and location of such helical peptides and proteins in the membrane are key factors determining their function and activity. Here we present a new solution state NMR method for obtaining the orientation of helical peptides in a membrane-mimetic environment (micelle-bound) without any chemical perturbation of the peptide-micelle system. By monitoring proton longitudinal relaxation rates upon addition of the freely water-soluble and inert paramagnetic probe Gd(DTPA-BMA) to an alpha-helical peptide, a wavelike pattern with a periodicity of 3.6 residues per turn is observed. The tilt and azimuth (rotation) angle of the helix determine the shape of this paramagnetic relaxation wave and can be obtained by least-square fitting of measured relaxation enhancements. Results are presented for the 15-residue antimicrobial peptide CM15 which forms an amphipathic helix almost parallel to the surface of the micelle. Thus, a few fast experiments enable the identification of helical regions and determination of the helix orientation within the micelle without the need for covalent modification, isotopic labeling, or sophisticated equipment. This approach opens a path toward the topology determination of alpha-helical membrane-proteins without the need for a complete NOE-based structure determination.
Collapse
Affiliation(s)
- Michal Respondek
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
15
|
Buck-Koehntop BA, Mascioni A, Buffy JJ, Veglia G. Structure, dynamics, and membrane topology of stannin: a mediator of neuronal cell apoptosis induced by trimethyltin chloride. J Mol Biol 2005; 354:652-65. [PMID: 16246365 DOI: 10.1016/j.jmb.2005.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Organotin compounds or alkyltins are ubiquitous environmental toxins that have been implicated in cellular death. Unlike other xenobiotic compounds, such as organomercurials and organoleads, alkyltins activate apoptotic cascades at low concentrations. Trimethyltin (TMT) chloride is amongst the most toxic organotin compounds, and is known to selectively inflict injury to specific regions of the brain. Stannin (SNN), an 88-residue mitochondrial membrane protein, has been identified as the specific marker for neuronal cell apoptosis induced by TMT intoxication. This high specificity of TMT makes SNN an ideal model system for understanding the mechanism of organotin neurotoxicity at a molecular level. Here, we report the three-dimensional structure and dynamics of SNN in detergent micelles, and its topological orientation in lipid bilayers as determined by solution and solid-state NMR spectroscopy. We found that SNN is a monotopic membrane protein composed of three domains: a single transmembrane helix (residues 10-33) that transverses the lipid bilayer at approximately a 20 degrees angle with respect to the membrane normal; a 28 residue unstructured linker, which includes a conserved CXC metal-binding motif and a putative 14-3-3zeta binding domain; and a distorted cytoplasmic helix (residues 61-79) that is partially absorbed into the plane of the lipid bilayer with a tilt angle of approximately 80 degrees from the membrane normal. The structure and architecture of SNN within the lipid environment provides insight about how this protein transmits toxic insults caused by TMT across the membrane.
Collapse
Affiliation(s)
- Bethany A Buck-Koehntop
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA
| | | | | | | |
Collapse
|
16
|
Narasimhaswamy T, Lee DK, Yamamoto K, Somanathan N, Ramamoorthy A. A 2D Solid-State NMR Experiment To Resolve Overlapping Aromatic Resonances of Thiophene-Based Nematogens. J Am Chem Soc 2005; 127:6958-9. [PMID: 15884932 DOI: 10.1021/ja051160j] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we demonstrate the feasibility of resolving overlapping 13C chemical shift spectral lines of aromatic rings in a thiophene-based nematogen in the mesophase using a 2D PITANSEMA solid-state NMR method. This technique provided the information about chemical shift values as well as dipolar couplings that are used for determining the orientational order parameter. Large C-H dipolar coupling values measured for thiophene in contrast to phenyl rings suggest that the heterocyclic ring is not part of the molecular axis. Using the order parameter, we determined the orientation of C-H vectors of the thiophene ring. We believe that the 2D solid-state NMR can be extended to other types of liquid crystalline materials such as the banana-based mesogens for determining the orientational order and bent angle.
Collapse
Affiliation(s)
- Tanneru Narasimhaswamy
- Biophysics Research Division and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|