1
|
Lai A, Macdonald PM. Phospholipid lateral diffusion in the presence of cationic peptides as measured via 31P CODEX NMR. Biophys Chem 2023; 295:106964. [PMID: 36764129 DOI: 10.1016/j.bpc.2023.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The effects of two cationic peptides on phospholipid lateral diffusion in binary mixtures of POPC with various anionic phospholipids were measured via 31P CODEX NMR. Large unilamellar vesicles composed of POPC/POPG (70/30 mol/mol), or POPC/DOPS (70/30 mol/mol), or POPC/TOCL (85/15 mol/mol), or POPC/DOPA (50/50 mol/mol) were exposed to either polylysine (pLYS, N = 134 monomers) or KL-14 (KKLL KKAKK LLKKL), a model amphipathic helical peptide, in an amount corresponding to 80% neutralization of the anionic phospholipid charge by the cationic lysine residues. In the absence of added peptide, phospholipid lateral diffusion coefficients (all measured at 10 °C) increased with increasing reduced temperature (T-Tm). The POPC/DOPA mixture was an exception to this generalization, in that lateral diffusion for both components was far slower than any other mixture investigated, an effect attributed to intermolecular hydrogen bonding. The addition of pLYS or KL-14 decreased lateral diffusion in the POPC/DOPS LUV, but had minimal effects in the POPC/POPG LUV, indicating that ease of access of the cationic peptide residues to the anionic phospholipid groups was important. Both cationic peptides produced the opposite effect in the POPC/DOPA case, in that lateral diffusion increased significantly in their presence, with KL-14 being most effective. This latter observation was interpreted in terms of the electrostatic / H-bond model proposed by Kooijman et al. [Journal of Biological Chemistry, 282:11356-11,364, 2007] to describe the mechanism of interaction between the phosphomonoester head group of PA and the tertiary amine of lysine.
Collapse
Affiliation(s)
- Angel Lai
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Peter M Macdonald
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
2
|
Haldar S. Delving into Membrane Heterogeneity Utilizing Fluorescence Lifetime Distribution Analysis. J Membr Biol 2022; 255:553-561. [PMID: 35486159 DOI: 10.1007/s00232-022-00235-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Lipid bilayer membranes are indispensable parts of cellular architecture. One of the integral properties of bilayer membranes is the environmental heterogeneity over a wide range of spatiotemporal scales. The environmental heterogeneity is a manifestation of the dynamic and compositional anisotropy in the plane of the membrane as well as along the bilayer normal. Fluorescence lifetime distribution analysis provides a spectroscopic tool to quantitatively characterize such heterogeneities. The review discusses recent applications of fluorescence lifetime distribution analysis utilizing the maximum entropy method to characterize horizontal and vertical heterogeneities in membranes.
Collapse
Affiliation(s)
- Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR- Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
3
|
Nandi S, Ghosh B, Ghosh M, Layek S, Nandi PK, Sarkar N. Phenylalanine Interacts with Oleic Acid-Based Vesicle Membrane. Understanding the Molecular Role of Fibril-Vesicle Interaction under the Context of Phenylketonuria. J Phys Chem B 2021; 125:9776-9793. [PMID: 34420302 DOI: 10.1021/acs.jpcb.1c05592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present contribution, on the basis of a spectroscopic and microscopic investigation, the characterization and photophysics of various assemblies of oleic acid/oleate solution at three pH values, namely, 8.28, 9.72, and 11.77, were explored. The variation in the dynamic response of aqua molecules in and around the assemblies has been interrogated by a picoseconds solvation dynamics experiment using a time-correlated single-photon counting setup employing coumarin-153 as a probe. On the one hand, the time-resolved fluorescence anisotropy measurement along with the fluorescence correlation spectroscopy experiment was executed to extract information regarding the comparison of the extent of the internal restricted confinement of these assemblies. On the other hand, an effort to investigate the cross-interaction between the self-assembled architectures of l-phenylalanine (l-Phe), responsible for phenylketonuria (PKU) disorder, and the oleic acid at the vesicle-forming pH established that the l-Phe fibrillar morphologies strongly alter the dynamic properties of the vesicle membrane formed by the oleic acid. Specifically, the interaction of the l-Phe assemblies with the oleic acid vesicle membrane is found to introduce the flexibility of the vesicle membrane and alter the hydration properties of the membrane. To track the fibril-induced alterations of the oleic acid vesicle properties, various spectroscopic and microscopic investigations were performed. The mutual reconciliation of the experimental outputs, therefore, portrays the state of the art, which accounts for the fibril-induced alterations of the properties of the oleic acid vesicle membrane, the mimicking setup of the cellular membrane, thereby informing us that alterations of such a property of the membrane should be taken into active consideration during the rational development of therapeutic modulators against disorders like PKU.
Collapse
Affiliation(s)
- Sourav Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
4
|
Hossain M, Blanchard GJ. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chem Phys Lipids 2021; 238:105091. [PMID: 33992653 PMCID: PMC8222165 DOI: 10.1016/j.chemphyslip.2021.105091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The interactions of molecules such as short-chain alcohols with the mammalian plasma membrane are thought to play a role in anesthetic effects. We have examined the concentration-dependent effects of ethanol and n-butanol on the fluidity of planar model lipid bilayer structures supported on mica. The supported model bilayer was composed of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), cholesterol, and sphingomyelin, and the bilayers were formed by vesicle fusion from extruded unilamellar vesicles (133 nm diameter, polydispersity index of 0.17). Controlled amounts of ethanol and n-butanol were added during vesicle deposition. Translational diffusion constants were obtained utilizing fluorescence recovery after photobleaching (FRAP) measurements on the micrometer scale with perylene as the fluorophore. The translational diffusion constants increased and then decreased with increasing ethanol concentration, with the bilayer structure degrading at ca. 0.8 M ethanol. A similar trend was observed for n-butanol at lower alcohol concentrations owing to greater interactions with phospholipid bilayer constituents. For n-butanol, the integrity of the planar bilayer structure deteriorated at ca. 0.4 M n-butanol. The results are consistent with bilayer interdigitation.
Collapse
Affiliation(s)
- Masroor Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Carreira AC, Pokorna S, Ventura AE, Walker MW, Futerman AH, Lloyd-Evans E, de Almeida RFM, Silva LC. Biophysical impact of sphingosine and other abnormal lipid accumulation in Niemann-Pick disease type C cell models. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158944. [PMID: 33892149 DOI: 10.1016/j.bbalip.2021.158944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick disease type C (NPC) is a complex and rare pathology, which is mainly associated to mutations in the NPC1 gene. This disease is phenotypically characterized by the abnormal accumulation of multiple lipid species in the acidic compartments of the cell. Due to the complexity of stored material, a clear molecular mechanism explaining NPC pathophysiology is still not established. Abnormal sphingosine accumulation was suggested as the primary factor involved in the development of NPC, followed by the accumulation of other lipid species. To provide additional mechanistic insight into the role of sphingosine in NPC development, fluorescence spectroscopy and microscopy were used to study the biophysical properties of biological membranes using different cellular models of NPC. Addition of sphingosine to healthy CHO-K1 cells, in conditions where other lipid species are not yet accumulated, caused a rapid decrease in plasma membrane and lysosome membrane fluidity, suggesting a direct effect of sphingosine rather than a downstream event. Changes in membrane fluidity caused by addition of sphingosine were partially sustained upon impaired trafficking and metabolization of cholesterol in these cells, and could recapitulate the decrease in membrane fluidity observed in NPC1 null Chinese Hamster Ovary (CHO) cells (CHO-M12) and in cells with pharmacologically induced NPC phenotype (treated with U18666A). In summary, these results show for the first time that the fluidity of the membranes is altered in models of NPC and that these changes are in part caused by sphingosine, supporting the role of this lipid in the pathophysiology of NPC.
Collapse
Affiliation(s)
- Ana C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Sarka Pokorna
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Ana E Ventura
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Mathew W Walker
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Emyr Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
6
|
Sousa C, Santos FC, Bento-Oliveira A, Mestre B, Silva LC, de Almeida RFM. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Methods Mol Biol 2021; 2187:247-269. [PMID: 32770511 DOI: 10.1007/978-1-0716-0814-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.
Collapse
Affiliation(s)
- Carla Sousa
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa C Santos
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Mestre
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
8
|
Siddiquee AM, Houri A, Messalea KA, Lin J, Daeneke T, Abbey B, Mechler A, Kou S. Nanoscale Probing of Cholesterol-Rich Domains in Single Bilayer Dimyristoyl-Phosphocholine Membranes Using Near-Field Spectroscopic Imaging. J Phys Chem Lett 2020; 11:9476-9484. [PMID: 33108191 DOI: 10.1021/acs.jpclett.0c02192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cholesterol is believed to induce the formation of membrane domains, "rafts", which are implicated in a range of natural and pathologic membrane processes. Therefore, it is important to understand the role that cholesterol plays in the formation of these structures. Here, we use label-free spectroscopic imaging to investigate cholesterol fractioning in supported bilayer membranes at nanoscale. Scattering-type scanning near-field optical microscopy (s-SNOM) was used to visualize the formation of cholesterol-induced domains in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes. Our results revealed the coexistence of phase separated domains in DMPC lipids with 10 mol % cholesterol content, whereas a mostly homogeneous bilayer was found at low (5 mol %) and high (15 mol %) cholesterol content. Near-field nano-FTIR spectroscopy was used to identify the cholesterol-rich domains based on their qualitative chemical compositions. It was determined that cholesterol binds to phosphodiester and alkyl glycerol ester moieties, likely via hydrogen bonding of the alcohol to either of the ester oxygens. The results also confirm the existence of an ideal cholesterol-lipid mixture ratio (∼15:85) with a geometrically defined packing. At lower cholesterol content there is phase separation between liquid ordered and almost neat DMPC domains. Thus, the liquid ordered phase exists at an energy minimum at a given lipid-cholesterol ratio.
Collapse
Affiliation(s)
- Arif M Siddiquee
- Department of Electronic Science, Fujian Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Melbourne, Victoria 3086, Australia
| | - Aamd Houri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Kibret A Messalea
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jiao Lin
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brian Abbey
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Melbourne, Victoria 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Shanshan Kou
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Melbourne, Victoria 3086, Australia
| |
Collapse
|
9
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
10
|
Yano Y, Hanashima S, Tsuchikawa H, Yasuda T, Slotte JP, London E, Murata M. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains. Biophys J 2020; 119:539-552. [PMID: 32710823 PMCID: PMC7399500 DOI: 10.1016/j.bpj.2020.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-SM (SSM) and its enantiomer (ent-SSM) separately form nano-subdomains within the liquid-ordered phase involving homophilic SSM-SSM and ent-SSM-ent-SSM interactions. In this study, the details of the subdomain formation by SSMs at the nanometer range were examined using Förster resonance energy transfer (FRET) measurements in lipid bilayers containing SSM and ent-SSM, dioleoyl-phosphatidylcholine and Cho. Although microscopy detected a stereochemical effect on partition coefficient favoring stereochemically homophilic interactions in the liquid-ordered state, it showed no significant difference in large-scale liquid-ordered domain formation by the two stereoisomers. In contrast to the uniform domains seen microscopy, FRET analysis using fluorescent donor- and acceptor-labeled SSM showed distinct differences in SM and ent-SM colocalization within nanoscale distances. Donor- and acceptor-labeled SSM showed significantly higher FRET efficiency than did donor-labeled SSM and acceptor-labeled ent-SSM in lipid vesicles composed of “racemic” (1:1) mixtures of SSM/ent-SSM with dioleoylphosphatidylcholine and Cho. The difference in FRET efficiency indicated that SSM and ent-SSM assemble to form separate nano-subdomains. The average size of the subdomains decreased as temperature increased, and at physiological temperatures, the subdomains were found to have a single-digit nanometer radius. These results suggest that (even in the absence of ent-SM) SM-SM interactions play a crucial role in forming nano-subdomains within liquid-ordered domains and may be a key feature of lipid microdomains (or rafts) in biological membranes.
Collapse
Affiliation(s)
- Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Bento-Oliveira A, Santos FC, Marquês JT, Paulo PMR, Korte T, Herrmann A, Marinho HS, de Almeida RFM. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020; 10:biom10060871. [PMID: 32517183 PMCID: PMC7356636 DOI: 10.3390/biom10060871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Filipa C. Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Joaquim Trigo Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Pedro M. R. Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisbon, Portugal;
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - H. Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
- Correspondence: ; Tel.: +351-217-500-925
| |
Collapse
|
12
|
Nandi S, Pyne A, Ghosh M, Banerjee P, Ghosh B, Sarkar N. Antagonist Effects of l-Phenylalanine and the Enantiomeric Mixture Containing d-Phenylalanine on Phospholipid Vesicle Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2459-2473. [PMID: 32073868 DOI: 10.1021/acs.langmuir.9b03543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the congenital flaws of metabolism, phenylketonuria (PKU), is known to be related to the self-assembly of toxic fibrillar aggregates of phenylalanine (Phe) in blood at elevated concentrations. Our experimental findings using l-phenylalanine (l-Phe) at millimolar concentration suggest the formation of fibrillar morphologies in the dry phase, which in the solution phase interact strongly with the model membrane composed of 1,2-diacyl-sn-glycero-phosphocholine (LAPC) lipid, thereby decreasing the rigidity (or increasing the fluidity) of the membrane. The hydrophobic interaction, in addition to the electrostatic attraction of Phe with the model membrane, is found to be responsible for such phenomena. On the contrary, various microscopic observations reveal that such fibrillar morphologies of l-Phe are severely ruptured in the presence of its enantiomer d-phenylalanine (d-Phe), thereby converting the fibrillar morphologies into crushed flakes. Various biophysical studies, including the solvation dynamics experiment, suggest that this l-Phe in the presence of d-Phe, when interacting with the same model membrane, now reverts the rigidity of the membrane, i.e., increases the rigidity of the membrane, which was lost due to interaction with l-Phe exclusively. Fluorescence anisotropy measurements also support this reverse rigid character of the membrane in the presence of an enantiomeric mixture of amino acids. A comprehensive understanding of the interaction of Phe with the model membrane is further pursued at the single-molecular fluorescence detection level using fluorescence correlation spectroscopy (FCS) experiments. Therefore, our experimental conclusion interprets a linear correlation between increased permeability and enhanced fluidity of the membrane in the presence of l-Phe and certifies d-Phe as a therapeutic modulator of l-Phe fibrillar morphologies. Further, the study proposes that the rigidity of the membrane lost due to interaction with l-Phe was reinstated-in fact, increased-in the presence of the enantiomeric mixture containing both d- and l-Phe.
Collapse
|
13
|
Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183157. [PMID: 31846646 DOI: 10.1016/j.bbamem.2019.183157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Association of amphiphiles with biomembranes is important for their availability at specific locations in organisms and cells, being critical for their biological function. A prominent role is usually attributed to the hydrophobic effect, and to electrostatic interactions between charged amphiphiles and lipids. This work explores a closely related and complementary aspect, namely the contribution made by dipole moments to the strength of the interactions established. Two xanthene amphiphiles with opposite relative orientations of their dipole and amphiphilic moments have been selected (Rhodamine-C14 and Carboxyfluorescein-C14). The membranes studied have distinct lipid compositions, representing typical cell membrane pools, ranging from internal membranes to the outer and inner leaflet of the plasma membrane. A comprehensive study is reported, including the affinity of the amphiphiles for the different membranes, the stability of the amphiphiles as monomers and their tendency to form small clusters, as well as their transverse location in the membrane. The orientation of the amphiphile dipole moment, which determines whether its interaction with the membrane dipole potential is repulsive or attractive, is found to exert a large influence on the association of the amphiphile with ordered lipid membranes. These interactions are also responsible for the formation of small clusters or stabilization of amphiphile monomers in the membrane. The results obtained allow understanding the prevalence of protein lipidation at the N-terminal for efficient targeting to the plasma membrane, as well as the tendency of GPI-anchored proteins (usually lipidated at the C-terminal) to form small clusters in the membrane ordered domains.
Collapse
|
14
|
Spectroscopic investigation on alteration of dynamic properties of lipid membrane in presence of Gamma-Aminobutyric Acid (GABA). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep 2019; 9:7255. [PMID: 31076583 PMCID: PMC6510758 DOI: 10.1038/s41598-019-43561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
In vitro reconstitution and microscopic visualization of membrane processes is an indispensable source of information about a cellular function. Here we describe a conceptionally novel free-standing membrane template that facilitates such quantitative reconstitution of membrane remodelling at different scales. The Giant Suspended Bilayers (GSBs) spontaneously swell from lipid lamella reservoir deposited on microspheres. GSBs attached to the reservoir can be prepared from virtually any lipid composition following a fast procedure. Giant unilamellar vesicles can be further obtained by GSB detachment from the microspheres. The reservoir stabilizes GSB during deformations, mechanical micromanipulations, and fluorescence microscopy observations, while GSB-reservoir boundary enables the exchange of small solutes with GSB interior. These unique properties allow studying macro- and nano-scale membrane deformations, adding membrane-active compounds to both sides of GSB membrane and applying patch-clamp based approaches, thus making GSB a versatile tool for reconstitution and quantification of cellular membrane trafficking events.
Collapse
Affiliation(s)
- Ariana Velasco-Olmo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Julene Ormaetxea Gisasola
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Juan Manuel Martinez Galvez
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Javier Vera Lillo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Anna V Shnyrova
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
16
|
Rylaarsdam LE, Johnecheck GN, Looyenga BD, Louters LL. GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells. Biochimie 2019; 162:88-96. [PMID: 30980844 DOI: 10.1016/j.biochi.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Glucose is a preferred metabolite in most mammalian cells, and proper regulation of uptake is critical for organism homeostasis. The glucose transporter 1 (GLUT1) is responsible for glucose uptake in a wide variety of cells and appears to be regulated in a tissue specific manner. Therefore, a better understanding of GLUT1 regulation within its various cellular environments is essential for developing therapeutic strategies to treat disorders associated with glucose homeostasis. Previous findings suggest that plasma membrane subdomains called lipid rafts may play a role in regulation of GLUT1 uptake activity. While studying this phenomenon in L929 mouse fibroblast cells, we observed that GLUT1 associates with a low density lipid microdomain distinct from traditionally-defined lipid rafts. These structures are not altered by cholesterol removal with methyl-β-cyclodextrin and lack resistance to cold Triton X-100 extraction. Our data indicate that the GLUT1-containing membrane microdomains in L929 cells, as well as GLUT1's basal activity, are instead sphingolipid-dependent, being sensitive to both myriocin and sphingomyelinase treatment. These microdomains appear to be organized primarily by their lipid composition, as disruption of the actin cytoskeleton or microtubules does not alter the association of GLUT1 with them. Furthermore, the association of GLUT1 with these microdomains appears not to require palmitoylation or glycosylation, as pharmacologic inhibition of these processes had no impact on GLUT1 density in membrane fractions. Importantly, we find no evidence that GLUT1 is actively translocated into or out of low density membrane fractions in response to acute activation in L929 cell.
Collapse
Affiliation(s)
- Lauren E Rylaarsdam
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Grace N Johnecheck
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Brendan D Looyenga
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
17
|
Santos FC, Lobo GM, Fernandes AS, Videira A, de Almeida RFM. Changes in the Biophysical Properties of the Cell Membrane Are Involved in the Response of Neurospora crassa to Staurosporine. Front Physiol 2018; 9:1375. [PMID: 30364194 PMCID: PMC6193110 DOI: 10.3389/fphys.2018.01375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Neurospora crassa is a non-pathogenic filamentous fungus widely used as a multicellular eukaryotic model. Recently, the biophysical properties of the plasma membrane of N. crassa conidia were thoroughly characterized. They evolve during conidial germination at a speed that depends on culture conditions, suggesting an important association between membrane remodeling and the intense membrane biogenesis that takes place during the germinative process. Staurosporine (STS) is a drug used to induce programmed cell death in various organisms. In N. crassa, STS up-regulates the expression of the ABC transporter ABC-3, which localizes at the plasma membrane and pumps STS out. To understand the role of plasma membrane biophysical properties in the fungal drug response, N. crassa was subjected to STS treatment during early and late conidial development stages. Following 1 h treatment with STS, there is an increase in the abundance of the more ordered, sphingolipid-enriched, domains in the plasma membrane of conidia. This leads to higher fluidity in other membrane regions. The global order of the membrane remains thus practically unchanged. Significant changes in sphingolipid-enriched domains were also observed after 15 min challenge with STS, but they were essentially opposite to those verified for the 1 h treatment, suggesting different types of drug responses. STS effects on membrane properties that are more dependent on ergosterol levels also depend on the developmental stage. There were no alterations on 2 h-grown cells, clearly contrasting to what happens at longer growth times. In this case, the differences were more marked for longer STS treatment, and rationalized considering that the drug prevents the increase in the ergosterol/glycerophospholipid ratio that normally takes place at the late conidial stage/transition to the mycelial stage. This could be perceived as a drug-induced development arrest after 5 h growth, involving ergosterol, and pointing to a role of lipid rafts possibly related with an up-regulated expression of the ABC-3 transporter. Overall, our results suggest the involvement of membrane ordered domains in the response mechanisms to STS in N. crassa.
Collapse
Affiliation(s)
- Filipa C Santos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Gerson M Lobo
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Andreia S Fernandes
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Arnaldo Videira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| |
Collapse
|
18
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
19
|
Cabré EJ, Martínez-Calle M, Prieto M, Fedorov A, Olmeda B, Loura LMS, Pérez-Gil J. Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. J Biol Chem 2018; 293:9399-9411. [PMID: 29700110 DOI: 10.1074/jbc.ra117.000222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system.
Collapse
Affiliation(s)
- Elisa J Cabré
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain
| | - Marta Martínez-Calle
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Manuel Prieto
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Alexander Fedorov
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Bárbara Olmeda
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Luís M S Loura
- the Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal, and .,the Centro de Química de Coimbra, University of Coimbra, Coimbra 3004-535, Portugal
| | - Jesús Pérez-Gil
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain, .,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| |
Collapse
|
20
|
Cholesterol-like effects of a fluorotelomer alcohol incorporated in phospholipid membranes. Sci Rep 2018; 8:2154. [PMID: 29391464 PMCID: PMC5794869 DOI: 10.1038/s41598-018-20511-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 11/27/2022] Open
Abstract
Fluorocarbon amphiphiles are anthropogenic substances widely used in diverse applications such as food packaging, clothing or cookware. Due to their widespread use and non-biodegradability, these chemicals are now ubiquitous in the natural world with high propensity to bioaccumulate in biological membranes, wherein they may affect microscopic properties. Here, we test the hypothesis that a typical fluorocarbon amphiphile can affect lipid membranes similarly to cholesterol by investigating the effect of 1H,1H,2H,2H-perfluoro-1-decanol (8:2 FTOH) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes. Using solid-state nuclear magnetic resonance spectroscopy, differential scanning calorimetry and confocal microscopy, we present a consistent set of independent experimental evidences supporting this hypothesis, namely that upon incorporation of 8:2 FTOH, (i) a condensing effect on the acyl chains occurs in the fluid phase, (ii) coexistence of two membrane phases is observed below melting, and (iii) the melting temperature of DPPC varies no more than approximately ±1 °C up to a concentration of 40 mol% of 8:2 FTOH. The condensing effect is quantified by means of advanced dipolar recoupling solid-state NMR experiments and is found to be of approximately half the magnitude of the cholesterol effect at the same concentration.
Collapse
|
21
|
Nitenberg M, Bénarouche A, Maniti O, Marion E, Marsollier L, Géan J, Dufourc EJ, Cavalier JF, Canaan S, Girard-Egrot AP. The potent effect of mycolactone on lipid membranes. PLoS Pathog 2018; 14:e1006814. [PMID: 29320578 PMCID: PMC5779694 DOI: 10.1371/journal.ppat.1006814] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 μM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects.
Collapse
Affiliation(s)
- Milène Nitenberg
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| | | | - Ofelia Maniti
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| | - Estelle Marion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Laurent Marsollier
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Julie Géan
- Univ. Bordeaux, CNRS, Bordeaux INP, Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, Pessac, France
| | - Erick J. Dufourc
- Univ. Bordeaux, CNRS, Bordeaux INP, Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, Pessac, France
| | - Jean-François Cavalier
- Aix-Marseille Univ, CNRS, EIPL, Marseille, France
- Aix-Marseille Univ, CNRS, LISM, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, EIPL, Marseille, France
- Aix-Marseille Univ, CNRS, LISM, Marseille, France
| | - Agnès P. Girard-Egrot
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| |
Collapse
|
22
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
23
|
Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. J Virol 2017; 91:JVI.00267-17. [PMID: 28356535 DOI: 10.1128/jvi.00267-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells.IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.
Collapse
|
24
|
Hatae T, Koshiyama T, Ohba M. Domain Size Dependent Fluorescence Resonance Energy Transfer in Lipid Domain Incorporated Fluorophores. CHEM LETT 2017. [DOI: 10.1246/cl.170104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tatsuru Hatae
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395
| | - Tomomi Koshiyama
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395
| |
Collapse
|
25
|
Hato T, Winfree S, Day R, Sandoval RM, Molitoris BA, Yoder MC, Wiggins RC, Zheng Y, Dunn KW, Dagher PC. Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures. J Am Soc Nephrol 2017; 28:2420-2430. [PMID: 28250053 DOI: 10.1681/asn.2016101153] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 11/03/2022] Open
Abstract
In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.
Collapse
Affiliation(s)
| | | | | | | | - Bruce A Molitoris
- Departments of Medicine.,Department of Medicine, Roudebush Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | | | - Roger C Wiggins
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Yi Zheng
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Pierre C Dagher
- Departments of Medicine, .,Department of Medicine, Roudebush Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana.,Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|
26
|
Hasan IY, Mechler A. Analytical approaches to study domain formation in biomimetic membranes. Analyst 2017; 142:3062-3078. [PMID: 28758651 DOI: 10.1039/c7an01038a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel characterization methods open new horizons in the study of membrane mixtures.
Collapse
Affiliation(s)
- Imad Younus Hasan
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
27
|
Santos FC, Fernandes AS, Antunes CAC, Moreira FP, Videira A, Marinho HS, de Almeida RFM. Reorganization of plasma membrane lipid domains during conidial germination. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:156-166. [PMID: 27815222 DOI: 10.1016/j.bbalip.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023]
Abstract
Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth.
Collapse
Affiliation(s)
- Filipa C Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia S Fernandes
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina A C Antunes
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe P Moreira
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
28
|
Paiva TO, Bastos AEP, Marquês JT, Viana AS, Lima PA, de Almeida RFM. m-Cresol affects the lipid bilayer in membrane models and living neurons. RSC Adv 2016. [DOI: 10.1039/c6ra20337j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A preferential interaction of m-cresol with high dipole-potential cholesterol/sphingomyelin-enriched lipid domains jeopardizes membrane integrity, explaining the toxicity of m-cresol-containing insulin formulations.
Collapse
Affiliation(s)
- T. O. Paiva
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - A. E. P. Bastos
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - J. T. Marquês
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - A. S. Viana
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - P. A. Lima
- NOVA Medical School
- Faculdade de Ciências Médicas da Universidade Nova de Lisboa
- 1169-056 Lisboa
- Portugal
| | - R. F. M. de Almeida
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
29
|
Yasuda T, Matsumori N, Tsuchikawa H, Lönnfors M, Nyholm TKM, Slotte JP, Murata M. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13783-13792. [PMID: 26639840 DOI: 10.1021/acs.langmuir.5b03566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we measured the time-resolved fluorescence of trans-parinaric acid (tPA), steady-state fluorescence anisotropy of diphenylhexatriene (DPH), and (2)H NMR of 10,10-d2-stearoyl lipids in stearoyl sphingomyelin with cholesterol (SSM/Chol) and l-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine with Chol (PSPC/Chol) binary membranes. The results suggest that the membrane order obtained from the fluorescence experiments shows a similar temperature dependency as those of the (2)H NMR data. More importantly, the time-resolved fluorescence data implied the presence of at least two types of domains, cholesterol-poor gel-like domains (CPGLD) and cholesterol-enriched liquid-ordered (Lo) domains. These domains appear on a nano-to-micro second time scale for both SSM-Chol and PSPC-Chol membranes. The relative size of the gel-like domain was also estimated from the temperature-dependent lifetime measurements and (2)H NMR spectral changes. The results imply that the size of the gel-like domains is very small, probably on the nanometer scale, and smaller in SSM-Chol membrane than those in PSPC-Chol bilayers, which could account for the higher thermal stability of SM-Chol membranes. The present study demonstrates that gel-like nanodomains occur in SM-Chol binary membrane even with Chol content of over 33 mol %, which has been thought to consist exclusively of Lo phase, implying that not only Lo domains but also gel-like nanodomains are important for formation of lipid-ordered phase in SM-Chol and PC-Chol membranes.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University , Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University , Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Sciences, Kyushu University , Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University , Toyonaka, Osaka 560-0043, Japan
| | - Max Lönnfors
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FIN-20520 Turku, Finland
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FIN-20520 Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FIN-20520 Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University , Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
30
|
Can gramicidin ion channel affect the dipole potential of neighboring phospholipid headgroups? Bioelectrochemistry 2015; 106:343-52. [DOI: 10.1016/j.bioelechem.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
|
31
|
Abstract
The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane.
Collapse
Affiliation(s)
- Thomas S van Zanten
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| |
Collapse
|
32
|
The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity. Sci Rep 2015; 5:15884. [PMID: 26515753 PMCID: PMC4626808 DOI: 10.1038/srep15884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.
Collapse
|
33
|
Schröter F, Jakop U, Teichmann A, Haralampiev I, Tannert A, Wiesner B, Müller P, Müller K. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:149-63. [DOI: 10.1007/s00249-015-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 12/23/2022]
|
34
|
Lagny TJ, Bassereau P. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus 2015; 5:20150038. [PMID: 26464792 PMCID: PMC4590427 DOI: 10.1098/rsfs.2015.0038] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Being at the periphery of each cell compartment and enclosing the entire cell while interacting with a large part of cell components, cell membranes participate in most of the cell's vital functions. Biologists have worked for a long time on deciphering how membranes are organized, how they contribute to trafficking, motility, cytokinesis, cell-cell communication, information transport, etc., using top-down approaches and always more advanced techniques. In contrast, physicists have developed bottom-up approaches and minimal model membrane systems of growing complexity in order to build up general models that explain how cell membranes work and how they interact with proteins, e.g. the cytoskeleton. We review the different model membrane systems that are currently available, and how they can help deciphering cell functioning, but also list their limitations. Model membrane systems are also used in synthetic biology and can have potential applications beyond basic research. We discuss the possible synergy between the development of complex in vitro membrane systems in a biological context and for technological applications. Questions that could also be discussed are: what can we still do with synthetic systems, where do we stop building up and which are the alternative solutions?
Collapse
Affiliation(s)
- Thibaut J Lagny
- Institut Curie, PSL Research University , Laboratory PhysicoChimie Curie , 75248 Paris, Cedex 05 , France ; CNRS , UMR168, 75248 Paris, Cedex 05 , France ; Université Pierre et Marie Curie , 75252 Paris, Cedex 05 , France
| | - Patricia Bassereau
- Institut Curie, PSL Research University , Laboratory PhysicoChimie Curie , 75248 Paris, Cedex 05 , France ; CNRS , UMR168, 75248 Paris, Cedex 05 , France ; Université Pierre et Marie Curie , 75252 Paris, Cedex 05 , France
| |
Collapse
|
35
|
Becucci L, Benci S, Nuti F, Real-Fernandez F, Vaezi Z, Stella L, Venanzi M, Rovero P, Papini AM. Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis. MEMBRANES 2015; 5:576-96. [PMID: 26437433 PMCID: PMC4704000 DOI: 10.3390/membranes5040576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/24/2015] [Indexed: 11/18/2022]
Abstract
The interaction of lipid environments with the type I’ β-turn peptide structure called CSF114 and its N-glucosylated form CSF114(Glc), previously developed as a synthetic antigenic probe recognizing specific autoantibodies in a subpopulation of multiple sclerosis patients’ serum, was investigated by fluorescence spectroscopy and electrochemical experiments using large unilamellar vesicles, mercury supported lipid self-assembled monolayers (SAMs) and tethered bilayer lipid membranes (tBLMs). The synthetic antigenic probe N-glucosylated peptide CSF114(Glc) and its unglucosylated form interact with the polar heads of lipid SAMs of dioleoylphosphatidylcholine at nonzero transmembrane potentials, probably establishing a dual electrostatic interaction of the trimethylammonium and phosphate groups of the phosphatidylcholine polar head with the Glu5 and His9 residues on the opposite ends of the CSF114(Glc) β-turn encompassing residues 6-9. His9 protonation at pH 7 eliminates this dual interaction. CSF114(Glc) is adsorbed on top of SAMs of mixtures of dioleoylphosphatidylcholine with sphingomyelin, an important component of myelin, whose proteins are hypothesized to undergo an aberrant N-glucosylation triggering the autoimmune response. Incorporation of the type I’ β-turn peptide structure CSF114 into lipid SAMs by potential scans of electrochemical impedance spectroscopy induces defects causing a slight permeabilization toward cadmium ions. The N-glucopeptide CSF114(Glc) does not affect tBLMs to a detectable extent.
Collapse
Affiliation(s)
- Lucia Becucci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy.
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Benci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Francesca Nuti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Zahra Vaezi
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mariano Venanzi
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise CEDEX, France
| |
Collapse
|
36
|
Mahadeo M, Nathoo S, Ganesan S, Driedger M, Zaremberg V, Prenner EJ. Disruption of lipid domain organization in monolayers of complex yeast lipid extracts induced by the lysophosphatidylcholine analogue edelfosine in vivo. Chem Phys Lipids 2015; 191:153-62. [PMID: 26386399 DOI: 10.1016/j.chemphyslip.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
The lysophosphatidylcholine analogue edelfosine is a potent antitumor and antiparasitic drug that targets cell membranes. Previous studies have shown that edelfosine alters membrane domain organization inducing internalization of sterols and endocytosis of plasma membrane transporters. These early events affect signaling pathways that result in cell death. It has been shown that edelfosine preferentially partitions into more rigid lipid domains in mammalian as well as in yeast cells. In this work we aimed at investigating the effect of edelfosine on membrane domain organization using monolayers prepared from whole cell lipid extracts of cells treated with edelfosine compared to control conditions. In Langmuir monolayers we were able to detect important differences to the lipid packing of the membrane monofilm. Domain formation visualized by means of Brewster angle microscopy also showed major morphological changes between edelfosine treated versus control samples. Importantly, edelfosine resistant cells defective in drug uptake did not display the same differences. In addition, co-spread samples of control lipid extracts with edelfosine added post extraction did not fully mimic the results obtained with lipid extracts from treated cells. Altogether these results indicate that edelfosine induces changes in membrane domain organization and that these changes depend on drug uptake. Our work also validates the use of monolayers derived from complex cell lipid extracts combined with Brewster angle microscopy, as a sensitive approach to distinguish between conditions associated with susceptibility or resistance to lysophosphatidylcholine analogues.
Collapse
Affiliation(s)
- Mark Mahadeo
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Safia Nathoo
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Suriakarthiga Ganesan
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael Driedger
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Elmar J Prenner
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
37
|
Denz M, Haralampiev I, Schiller S, Szente L, Herrmann A, Huster D, Müller P. Interaction of fluorescent phospholipids with cyclodextrins. Chem Phys Lipids 2015; 194:37-48. [PMID: 26232666 DOI: 10.1016/j.chemphyslip.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 11/29/2022]
Abstract
Fluorescent analogs of phospholipids are often employed to investigate the structure and dynamics of lipids in membranes. Some of those studies have used cyclodextrins e.g., to modulate the lipid phase. However, the role of the fluorescence moiety of analogs for the interaction between cyclodextrins and fluorescent lipids has not been investigated so far in detail. Therefore, in the present study the interaction of various fluorescent phospholipid analogs with methylated α-, β- and γ- cyclodextrins was investigated. The analogs differed in their structure, in the length of the fatty acyl chain, in the position of the fluorescence group, and in the attached fluorescence moiety (7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) or dipyrrometheneboron difluoride (BODIPY)). In aqueous buffer, cyclodextrins bind fluorescent lipids disturbing the organization of the analogs. When incorporated into lipid vesicles, analogs are selectively extracted from the membrane upon addition of cyclodextrins. The results show that the interaction of cyclodextrins with fluorescent phospholipids depends on the cyclodextrin species, the fluorescence moiety and the phospholipid structure. The presented data should be of interest for studies using fluorescent phospholipids and cyclodextrins, since the interaction between the fluorescence group and the cyclodextrin may interfere with the process(es) under study.
Collapse
Affiliation(s)
- Manuela Denz
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Ivan Haralampiev
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Sabine Schiller
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Lajos Szente
- Cyclolab Ltd., P.O. Box 435, H-1525, Budapest, Hungary
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Daniel Huster
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Peter Müller
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
38
|
|
39
|
Marquês JT, Antunes CA, Santos FC, de Almeida RF. Biomembrane Organization and Function. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Ciprofloxacin Metalloantibiotic: An Effective Antibiotic with an Influx Route Strongly Dependent on Lipid Interaction? J Membr Biol 2014; 248:125-36. [DOI: 10.1007/s00232-014-9749-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/29/2014] [Indexed: 12/01/2022]
|
41
|
Zheng H, Jiménez-Flores R, Everett DW. Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. J Dairy Sci 2014; 97:5964-74. [DOI: 10.3168/jds.2014-7951] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023]
|
42
|
Hildebrandt N, Wegner KD, Algar WR. Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.01.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
The GM1 Ganglioside Forms GM1-Rich Gel Phase Microdomains within Lipid Rafts. COATINGS 2014. [DOI: 10.3390/coatings4030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Gutman J, Kaufman Y, Kawahara K, Walker SL, Freger V, Herzberg M. Interactions of glycosphingolipids and lipopolysaccharides with silica and polyamide surfaces: adsorption and viscoelastic properties. Biomacromolecules 2014; 15:2128-37. [PMID: 24835578 DOI: 10.1021/bm500245z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial outer membrane components play a critical role in bacteria-surface interactions (adhesion and repulsion). Sphingomonas species (spp.) differ from other Gram-negative bacteria in that they lack lipopolysaccharides (LPSs) in their outer membrane. Instead, Sphingomonas spp. outer membrane consists of glycosphingolipids (GSLs). To delineate the properties of the outer membrane of Sphingomonas spp. and to explain the adhesion of these cells to surfaces, we employed a single-component-based approach of comparing GSL vesicles to LPS vesicles. This is the first study to report the formation of vesicles containing 100% GSL. Significant physicochemical differences between GSL and LPS vesicles are reported. Composition-dependent vesicle adherence to different surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) technology was observed, where higher GSL content resulted in higher mass accumulation on the sensor. Additionally, the presence of 10% GSL and above was found to promote the relative rigidity of the vesicle obtaining viscoelastic ratio of 30-70% higher than that of pure LPS vesicles.
Collapse
Affiliation(s)
- Jenia Gutman
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | | | | | | | | | | |
Collapse
|
45
|
Pinheiro M, Pisco S, Silva AS, Nunes C, Reis S. Evaluation of the effect of rifampicin on the biophysical properties of the membranes: Significance for therapeutic and side effects. Int J Pharm 2014; 466:190-7. [DOI: 10.1016/j.ijpharm.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 01/01/2023]
|
46
|
Lorent J, Lins L, Domenech Ò, Quetin-Leclercq J, Brasseur R, Mingeot-Leclercq MP. Domain formation and permeabilization induced by the saponin α-hederin and its aglycone hederagenin in a cholesterol-containing bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4556-4569. [PMID: 24690040 DOI: 10.1021/la4049902] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.
Collapse
Affiliation(s)
- Joseph Lorent
- Université Catholique de Louvain , Louvain Drug Research Institute, Cellular and Molecular Pharmacology, B1.73.05, Avenue E. Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Lipid bilayers supported on bare and modified gold – Formation, characterization and relevance of lipid rafts. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Khmelinskaia A, Ibarguren M, de Almeida RFM, López DJ, Paixão VA, Ahyayauch H, Goñi FM, Escribá PV. Changes in membrane organization upon spontaneous insertion of 2-hydroxylated unsaturated fatty acids in the lipid bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2117-2128. [PMID: 24490728 DOI: 10.1021/la403977f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes. The main effects of 2OHFAs are a decrease in lipid order, with a looser packing of the acyl chains, and a decreased dipole potential, regardless of the 2OHFAs' relative affinity for the lipid bilayer. The strongest effects are usually observed for 2-hydroxyarachidonic (C20:4) acid, and the weakest one, for 2-hydroxydocosahexaenoic acid (C22:6). In addition, 2OHFAs cause increased hydration, except in gel-phase membranes, which can be explained by the 2OHFA preference for membrane defects. Concerning the membrane dipole potential, the magnitude of the reduction induced by 2OHFAs was particularly marked in the liquid-ordered (lo) phase (cholesterol/sphingomyelin-rich) membranes, those where order reduction was the smallest, suggesting a disruption of cholesterol-sphingolipid interactions that are responsible for the large dipole potential in those membranes. Moreover, 2OHFA effects were larger than for both lo and ld phases separately in model membranes with liquid disordered (ld)/lo coexistence when both phases were present in significant amounts, possibly because of the facilitating effect of ld/lo domain interfaces. The specific and marked changes induced by 2OHFAs in several membrane properties suggest that the initial interaction with the membrane and subsequent reorganization might constitute an important step in their mechanisms of action.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Centro de Quimica e Bioquimica, DQB, Faculdade de Ciências da Universidade de Lisboa , Campo Grande, Ed. C8, 1749-016 Lisboa Portugal
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Algar WR, Kim H, Medintz IL, Hildebrandt N. Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.07.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Setiawan I, Blanchard GJ. Ethanol-induced perturbations to planar lipid bilayer structures. J Phys Chem B 2014; 118:537-46. [PMID: 24372563 DOI: 10.1021/jp410305m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report on the formation of planar lipid bilayer structures on mica where the bilayer contains the phosphocholine 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), cholesterol, sphingomyelin and sulforhodamine-tagged-1,2-dioleoyl-sn-phosphatidylethanolamine (SR-DOPE). Phase separation is seen for the cholesterol domains within the bilayer structure, and exposure of this supported bilayer to controlled concentrations of ethanol reveals organizational changes on both the micrometer- and molecular-length scales. We report steady state fluorescence imaging, fluorescence lifetime imaging, and fluorescence anisotropy decay imaging for these bilayers. These data are complementary to existing information on the interactions of lipid bilayers with ethanol and point to subtle but important changes in the molecular-scale organization of these structures.
Collapse
Affiliation(s)
- Iwan Setiawan
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | | |
Collapse
|