1
|
Tamai N, Kamiya M, Kiriyama N, Goto M, Fukada K, Matsuki H. Effect of Monosaccharides Including Rare Sugars on the Bilayer Phase Behavior of Dimyristoylphosphatidylcholine. MEMBRANES 2024; 14:258. [PMID: 39728708 DOI: 10.3390/membranes14120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry. DSC measurements using normal sample dispersions with different sugar concentrations revealed that the temperatures and transition enthalpies of the pre- and main transition of the DMPC bilayer membrane did not significantly depend on the sugar concentration for all monosaccharides. DSC measurements using the unusual sample dispersions demonstrated that the concentration asymmetry caused the splitting of the endothermic peak of the main transition similarly irrespective of the sort of monosaccharides present. From all these DSC results, we conclude that (i) most monosaccharide molecules exist in the bulk water phase, (ii) no specific interaction depending on the molecular structure of each monosaccharide directly occurs between the DMPC and each monosaccharide molecule, and (iii) almost all the effects of the monosaccharides observed in this study are understandable as the general colligative properties of solutions.
Collapse
Affiliation(s)
- Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Mei Kamiya
- Department of Applied Life Science, Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Nono Kiriyama
- Department of Applied Life Science, Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita 761-0795, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
2
|
Usuda H, Mishima Y, Noda K, Toyoshima T, Sakurai K, Takamura C, Takahashi A, Minami K, Kawamoto T. Vesicles exhibit high-performance removal of per-and polyfluoroalkyl substances (PFAS) depending on their hydrophobic groups. CHEMOSPHERE 2024; 363:142818. [PMID: 39002653 DOI: 10.1016/j.chemosphere.2024.142818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The removal of per- and polyfluoroalkyl substances (PFAS) from drinking water is urgently needed. Here, we demonstrated high performance of vesicles on PFAS adsorption. Vesicles used in this study were enclosed amphiphile bilayers keeping their hydrophobic groups inside and their hydrophilic groups outside in water. The distribution coefficient Kd of perfluorooctane sulfonic acid (PFOS) for vesicles was 5.3 × 105 L/kg, which is higher than that for granulated activated carbon (GAC), and Kd of perfluorooctanoic acid (PFOA) for vesicles was 103-104 L/kg. The removal efficiencies of PFOA and PFOS adsorption on DMPC vesicles were 97.1 ± 0.1% and 99.4 ± 0.2%, respectively. The adsorption behaviors of PFOA and PFOS on vesicles were investigated by changing the number of cis-double bonds in the hydrophobic chains of the vesicle constituents. Moreover, vesicles formed by membranes in the different phases were also tested. The results revealed that, when vesicles are formed of a membrane in the liquid-crystalline (liquid-like) phase, the adsorption amounts of both PFOA and PFOS increased as the cis-double bond in the hydrocarbon chains decreased, which is considered due to molecular shape similarity. When vesicles are formed of a membrane in the gel (solid-like) phase, they do not adsorb PFAS as much as in the liquid-crystalline phase, even though the hydrocarbon chains do not have any cis-double bond. Our findings demonstrate that vesicles can be utilized as PFAS adsorbents by optimizing the structure of vesicle constituents and their thermodynamical phase. Indeed, the vesicles (DMPC) were demonstrated that they can adsorb PFOA and PFOS, and be coagulated by a coagulant even in environmental water. The coagulation will enable the removal of PFOA and PFOS from the water after adsorption.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| | - Yoshie Mishima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takahiro Toyoshima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Koji Sakurai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Chieko Takamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kimitaka Minami
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| |
Collapse
|
3
|
Fernández L, Reviglio AL, Heredia DA, Morales GM, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Larghi EL, Bracca AB, Kaufman TS. Langmuir-Blodgett monolayers holding a wound healing active compound and its effect in cell culture. A model for the study of surface mediated drug delivery systems. Heliyon 2021; 7:e06436. [PMID: 33763610 PMCID: PMC7973310 DOI: 10.1016/j.heliyon.2021.e06436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Langmuir and Langmuir-Blodgett films holding a synthetic bioinspired wound healing active compound were used as drug-delivery platforms. Palmitic acid Langmuir monolayers were able to incorporate 2-methyltriclisine, a synthetic Triclisine derivative that showed wound healing activity. The layers proved to be stable and the nanocomposites were transferred to solid substrates. Normal human lung cells (Medical Research Council cell strain 5, MRC-5) were grown over the monomolecular Langmuir-Blodgett films that acted as a drug reservoir and delivery system. The proliferation and migration of the cells were clearly affected by the presence of 2-methyltriclisine in the amphiphilic layers. The methodology is proposed as a simple and reliable model for the study of the effects of bioactive compounds over cellular cultures.
Collapse
Affiliation(s)
- Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Ana Lucía Reviglio
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Daniel A. Heredia
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Gustavo M. Morales
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580, Marcos Juárez, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Andrea B.J. Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| |
Collapse
|
4
|
Usuda H, Hishida M, Yamamura Y, Saito K. Common Effects of Incorporatedn-Alkane Derivatives on Molecular Packing and Phase Behavior of DPPC Bilayers. CHEM LETT 2018. [DOI: 10.1246/cl.180747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hatsuho Usuda
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
5
|
Matsuki H, Kato K, Okamoto H, Yoshida S, Goto M, Tamai N, Kaneshina S. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures. Chem Phys Lipids 2017; 209:9-18. [PMID: 29042237 DOI: 10.1016/j.chemphyslip.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
The variation in phase-transition temperatures of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane by adding two membrane-active ligands, a long-chain fatty acid (palmitic acid (PA)) and an inhalation anesthetic (halothane (HAL)), was investigated by light-transmittance measurements and fluorometry. By assuming the thermodynamic colligative property for the bilayer membrane at low ligand concentrations, the partitioning behavior of these ligands into the DPPC bilayer membrane was considered. It was proved from the differential partition coefficients between two phases that PA has strong affinity with the gel (lamellar gel) phase in a micro-molal concentration range and makes the bilayer membrane more ordered, while HAL has strong affinity with the liquid crystalline phase in a milli-molal concentration range and does the bilayer membrane more disordered. The transfer volumes of both ligands from the aqueous solution to each phase of the DPPC bilayer membrane showed that the preferential partitioning of the PA molecule into the gel (lamellar gel) produces about 20% decrease in transfer volume as compared with the liquid crystalline phase, whereas that of the HAL molecule into the liquid crystalline phase does about twice increase in transfer volume as compared with the gel (ripple gel) phase. Furthermore, changes in thermotropic and barotropic phase behavior of the DPPC bilayer membrane by adding the ligand was discussed from the viewpoint of the ligand partitioning. Reflecting the contrastive partitioning of PA and HAL into the pressure-induced interdigitated gel phase among the gel phases, it was revealed that PA suppresses the formation of the interdigitated gel phase under high pressure while HAL promotes it. These results clearly indicate that each phase of the DPPC bilayer membrane has a potential to recognize various ligand molecules.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan.
| | - Kentaro Kato
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotsugu Okamoto
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Shuntaro Yoshida
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Shoji Kaneshina
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| |
Collapse
|
6
|
Nakata S, Seki Y, Nomura M, Fukuhara K, Denda M. Characteristic Isotherms for a Mixed Molecular Layer Composed of Phospholipid and Fatty Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
- Japan Science and Technology Agency, CREST, Tokyo
| | - Yota Seki
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Mio Nomura
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Koichi Fukuhara
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Tokyo
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tuzuki-ku, Yokohama, Kanagawa 224-8558
| |
Collapse
|
7
|
Usuda H, Hishida M, Yamamura Y, Saito K. Contrasting Effects of a Rigid Core and an Alkyl Chain in nCB on the Phase Behavior of Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5966-5972. [PMID: 27219128 DOI: 10.1021/acs.langmuir.6b00774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecules incorporated into biomembranes often bear both a core and an alkyl chain in a single molecule (e.g., sterols). To clarify the effects of these two parts of a molecule, the phase behavior of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer containing 4-n-alkyl-4'-cyanobiphenyl (nCB) (n = 0-8) was investigated. The trends of the main transition temperature (Tm) with respect to n and of the pretransition temperature (Tp) with respect to nCB content changed at n = 3. It was therefore suggested that the two parts of the molecule had opposing effects on the phase behavior of DPPC bilayers. The core appears to perturb molecular ordering in the gel phase and lowers Tm (like cholesterol), while alkyl chains appear to order the lipids in the gel phase and raise Tm (like n-alkanes). In addition, Tm exhibits the so-called odd-even effect based on the alkyl chain length of the minor component, nCB. Depending on the value of n, the variation in Tp was dependent on the additive content, although the pretransition was rarely observed at high contents.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
8
|
Abstract
Bilayers formed by phospholipids are fundamental structures of biological membranes. The mechanical perturbation brought about by pressure significantly affects the membrane states of phospholipid bilayers. In this chapter, we focus our attention on the pressure responsivity for bilayers of some major phospholipids contained in biological membranes. At first, the membrane states and phase transitions of phospholipid bilayers depending on water content, temperature and pressure are explained by using the bilayer phase diagrams of dipalmitoylphosphatidylcholine (DPPC), which is the most familiar phospholipid in model membrane studies. Subsequently, the thermotropic and barotropic bilayer phase behavior of various kinds of phospholipids with different molecular structures is discussed from the comparison of their temperature--pressure phase diagrams to that of the DPPC bilayer. It turns out that a slight change in the molecular structure of the phospholipids produces a significant difference in the bilayer phase behavior. The systematic pressure studies on the phase behavior of the phospholipid bilayers reveal not only the pressure responsivity for the bilayers but also the role and meaning of several important phospholipids existing in real biological membranes.
Collapse
|
9
|
Nishimoto M, Komatsu U, Tamai N, Yamanaka M, Kaneshina S, Ogli K, Matsuki H. Intrinsic interaction mode of an inhalation anesthetic with globular proteins: a comparative study on ligand recognition. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2491-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Nishimoto M, Morimitsu T, Tamai N, Kaneshina S, Nagamune H, Matsuki H. Inhibition of anti-fluorescent probe monoclonal antibody by long-chain amphiphiles. Colloids Surf B Biointerfaces 2010; 75:80-7. [DOI: 10.1016/j.colsurfb.2009.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 11/24/2022]
|
11
|
Aoki PHB, Alessio P, Rodríguez-Méndez ML, De Saja Saez JA, Constantino CJL. Taking advantage of electrostatic interactions to grow Langmuir-Blodgett films containing multilayers of the phospholipid dipalmitoylphosphatidylglycerol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13062-13070. [PMID: 19601609 DOI: 10.1021/la901923v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of phospholipids as mimetic systems for studies involving the cell membrane is a well-known approach. In this context, the Langmuir and Langmuir-Blodgett (LB) methods are among the main techniques used to produce ordered layers of phospholipids structured as mono- or bilayers on water subphase and solid substrates. However, the difficulties of producing multilayer LB films of phospholipids restrict the application of this technique depending on the sensitivity of the experimental analysis to be conducted. Here, an alternative approach is used to produce LB films containing multilayers of the negative phospholipid dipalmitoylphosphatidylglycerol (DPPG). Inspired by the electrostatic layer-by-layer (LbL) technique, DPPG multilayer LB films were produced by transferring the DPPG Langmuir monolayers from the water subphase containing low concentrations of the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) onto solid substrates. Fourier transform infrared (FTIR) absorption spectroscopy revealed that the interactions between the NH(3)(+) (PAH) and PO(4)(-) (DPPG) groups might be the main driving forces that allow growth of these LB films. Besides, ultraviolet-visible (UV-vis) absorption spectroscopy showed that the multilayer LB films can be grown in a controlled way in terms of thickness at nanometer scale. Cyclic voltammetry showed that DPPG and PAH are more packed in the LB than LbL films. The latter finding is related to the distinct molecular architecture of the films since DPPG is structured as monolayers in the LB films and multilamellar vesicles in the LbL films. Despite the interaction with PAH, cyclic voltammetry also showed that DPPG retains its biological activity in LB films, which is a key factor since this makes DPPG a suitable material in sensing applications. Therefore, multilayer LB films were deposited onto Pt interdigitated electrodes forming sensing units, which were applied in the detection of a phenothiazine compound [methylene blue (MB)] using impedance spectroscopy. The performance of DPPG in single-layer and multilayer LB films was compared to the performance of sensing unities composed of DPPG in single-layer and multilayer LbL films, showing the importance of both the thickness and the molecular architecture of the thin films. As found in a previous work for LbL films, the high sensitivity reached by these sensing units is intimately related to changes in the morphology of the film as evidenced by the micro-Raman technique. Finally, the interaction between MB and the (DPPG+PAH) LB films was complemented by pi-A isotherms and surface-enhanced resonance Raman scattering (SERRS).
Collapse
Affiliation(s)
- Pedro H B Aoki
- Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, UNESP, 19060-900 Presidente Prudente, SP, Brazil
| | | | | | | | | |
Collapse
|
12
|
A comparative study on specific and nonspecific interactions in bovine serum albumin: thermal and volume effects of halothane and palmitic acid. Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2054-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|