1
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
2
|
An overview of peroxidation reactions using liposomes as model systems and analytical methods as monitoring tools. Colloids Surf B Biointerfaces 2020; 195:111254. [DOI: 10.1016/j.colsurfb.2020.111254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
|
3
|
Magalhães dos Santos D, Sanches MP, Poffo CM, Parize AL, Sagrera Darelli GJ, Rodrigues de Lima V. Syringic and cinnamic acids antiradical/antioxidant activities as R. ferruginea extract components and membrane physico-chemical influence. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Cruz dos Santos S, Osti Silva N, dos Santos Espinelli JB, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Faita FL, Meira Soares B, Horn AP, Parize AL, Rodrigues de Lima V. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218:22-33. [DOI: 10.1016/j.chemphyslip.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
|
5
|
dos Santos DM, Rocha CVJ, da Silveira EF, Marinho MAG, Rodrigues MR, Silva NO, da Silva Ferreira A, de Moura NF, Darelli GJS, Braganhol E, Horn AP, de Lima VR. In Vitro Anti/Pro-oxidant Activities of R. ferruginea Extract and Its Effect on Glioma Cell Viability: Correlation with Phenolic Compound Content and Effects on Membrane Dynamics. J Membr Biol 2018; 251:247-261. [DOI: 10.1007/s00232-018-0017-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/29/2018] [Indexed: 11/30/2022]
|
6
|
Bisevac JP, Djukic M, Stanojevic I, Stevanovic I, Mijuskovic Z, Djuric A, Gobeljic B, Banovic T, Vojvodic D. Association Between Oxidative Stress and Melanoma Progression. J Med Biochem 2018; 37:12-20. [PMID: 30581337 PMCID: PMC6294103 DOI: 10.1515/jomb-2017-0040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overproduction of free radicals accompanied with their insufficient removal/neutralization by antioxidative defense system impairs redox hemostasis in living organisms. Oxidative stress has been shown to be involved in all the stages of carcinogenesis and malignant melanocyte transformation. The aim of this study was to examine association between oxidative stress development and different stages of melanoma. METHODS The measured oxidative stress parameters included: superoxide anion radical, total and manganese superoxide dismutase, catalase and malondialdehyde. Oxidative stress parameters were measured spectrophotometrically in serum samples from melanoma patients (n=72) and healthy control subjects (n=30). Patients were classified according to AJCC clinical stage. RESULTS Average superoxide anion and malondialdehyde concentrations were significantly higher in melanoma patients than in control group, with the highest value of superoxide anion in stage III, while malondialdehyde highest value was in stage IV. The activity of total and manganese superoxide dismutase was insignificantly higher in melanoma patients than in control group, while catalase activity was significantly higher. The highest activity of total activity of manganese superoxide dismutase was in stage IV. Catalase activity was increasing with the disease progression achieving the maximum in stage III. CONCLUSION Results of our study suggest that melanoma is oxidative stress associated disease, as well as deteriorated cell functioning at mitochondrial level.
Collapse
Affiliation(s)
| | - Mirjana Djukic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Zeljko Mijuskovic
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
- Clinic of Dermatology, Military Medical Academy, Belgrade, Serbia
| | - Ana Djuric
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Borko Gobeljic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Tatjana Banovic
- Department of Immunology, SA Pathology, Royal Adelaide Hospital, Adelaide, Australia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| |
Collapse
|
7
|
Lopes de Azambuja CR, dos Santos LG, Rodrigues MR, Rodrigues RFM, da Silveira EF, Azambuja JH, Flores AF, Horn AP, Dora CL, Muccillo-Baisch AL, Braganhol E, da Silva Pinto L, Parize AL, de Lima VR. Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chem Phys Lipids 2015; 193:24-35. [DOI: 10.1016/j.chemphyslip.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
|
8
|
Lee SC, Jeon YJ. Effect of defatted sesame meal extract on phospholipid peroxidation in liposomes. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Piedrahita AM, Peñaloza J, Cogollo Á, Rojano BA. Kinetic Study of the Oxidative Degradation of Choibá Oil (<i>Dipteryx oleifera</i> Benth.) with Addition of Rosemary Extract (<i>Rosmarinus officinalis</i> L.). ACTA ACUST UNITED AC 2015. [DOI: 10.4236/fns.2015.65048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Wang J, Yuan L, Cheng B, Li W, Xiao C, Wang Y, Liu X. Antioxidant capacity and antitumor activity of Fructus Kochiae extracts. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2014. [DOI: 10.3920/qas2012.0218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J. Wang
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - L. Yuan
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - B. Cheng
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - W. Li
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - C. Xiao
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - Y. Wang
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| | - X. Liu
- College of Food Science and Engineering, Northwest A&F University, Taicheng Road 3, Yangling, 0086-712100 Shaanxi, China P.R
| |
Collapse
|
11
|
Five decades with polyunsaturated Fatty acids: chemical synthesis, enzymatic formation, lipid peroxidation and its biological effects. J Lipids 2013; 2013:710290. [PMID: 24490074 PMCID: PMC3892483 DOI: 10.1155/2013/710290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.
Collapse
|
12
|
Payton NM, Wempe MF, Betker JL, Randolph TW, Anchordoquy TJ. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants. Eur J Pharm Biopharm 2013; 85:306-13. [PMID: 23567484 DOI: 10.1016/j.ejpb.2013.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/30/2022]
Abstract
As liquid liposomal formulations are prone to chemical degradation and aggregation, these formulations often require freeze drying (e.g., lyophilization) to achieve sufficient shelf-life. However, liposomal formulations may undergo oxidation during lyophilization and/or during prolonged storage. The goal of the current study was to characterize the degradation of 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (DLPC) during lyophilization and to also probe the influence of metal contaminants in promoting the observed degradation. Aqueous sugar formulations containing DLPC (0.01 mg/ml) were lyophilized, and DLPC degradation was monitored using HPLC/UV and GC/MS methods. The effect of ferrous ion and sucrose concentration, as well as lyophilization stage promoting lipid degradation, was investigated. DLPC degradation increased with higher levels of ferrous ion. After lyophilization, 103.1 ± 1.1%, 66.9 ± 0.8%, and 28.7 ± 0.7% DLPC remained in the sucrose samples spiked with 0.0 ppm, 0.2 ppm, and 1.0 ppm ferrous ion, respectively. Lipid degradation predominantly occurs during the freezing stage of lyophilization. Sugar concentration and buffer ionic strength also influence the extent of lipid degradation, and DLPC loss correlated with degradation product formation. We conclude that DLPC oxidation during the freezing stage of lyophilization dramatically compromises the stability of lipid-based formulations. In addition, we demonstrate that metal contaminants in sugars can become highly active when lyophilized in the presence of a reducing agent.
Collapse
Affiliation(s)
- N M Payton
- Department of Pharmaceutical Sciences, University of Colorado Denver, USA.
| | | | | | | | | |
Collapse
|
13
|
Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E, Castell J, Gombau L. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro 2013; 27:954-63. [DOI: 10.1016/j.tiv.2013.01.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/24/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
14
|
The antioxidant behaviour of melatonin and structural analogues during lipid peroxidation depends not only on their functional groups but also on the assay system. Biochem Biophys Res Commun 2012; 423:873-7. [PMID: 22713457 DOI: 10.1016/j.bbrc.2012.06.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/24/2023]
Abstract
There is no general agreement yet on the antioxidant effect of pineal indoles against lipid peroxidation. Accordingly, the main goal of the present work was to study the antioxidant activity of melatonin (MLT), N-acetylserotonin (NAS), 5-HO-tryptophan (5HO-TRP) and 5-methoxytryptamine (5MTP) in two different lipid systems with high content of polyunsaturated fatty acids (PUFAs): triglycerides (rich in 20:5 n-3, 22:6 n-3) dissolved in chloroform and sonicated liposomes made of retinal lipids (rich in 22:6 n-3). In the triglyceride-chloroform-system the peroxidation reaction was initiated by cumene hydroperoxide (CHP) whereas liposomes were peroxidized with Fe(2+). The techniques employed at the present work were: (1) TBARS production, (2) DPPH assay, (3) determination of conjugated dienes production and (4) analysis of fatty acid profile by GC-MS. Butylated hydroxytoluene (BHT) was employed as a reference because of its well known antioxidant capacity. Our results showed that MLT and 5MTP were unable to protect PUFAs against lipid peroxidation in both systems, whereas NAS and 5HO-TRP were better antioxidants that BHT in the triglyceride-system but ineffective in the liposome-system. We conclude that the antioxidant behaviour of pineal indoles depends not only on their functional groups but also on the assay system and could be explained by the polar paradox theory.
Collapse
|
15
|
Reis A, Spickett CM. Chemistry of phospholipid oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2374-87. [PMID: 22342938 DOI: 10.1016/j.bbamem.2012.02.002] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/14/2012] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
Abstract
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
|
16
|
Mansour HB, Mosrati R, Barillier D, Ghedira K, Chekir-Ghedira L. Bioremediation of industrial pharmaceutical drugs. Drug Chem Toxicol 2012; 35:235-40. [DOI: 10.3109/01480545.2011.591799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Phospholipid peroxidation: lack of effect of fatty acid pairing. Lipids 2012; 47:451-60. [PMID: 22271423 DOI: 10.1007/s11745-012-3654-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
Abstract
Phospholipids where both fatty acids are polyunsaturated are very rare. Most organisms prefer to couple their polyunsaturated fatty acids (PUFA) with either a saturated (SAT) or a monounsaturated (MUFA) fatty acid. This study examined if these natural couplings are there to protect PUFA from themselves. Specifically, does the coupling of PUFA to SAT or MUFA reduce the potential for increased rates of peroxidation by shrouding these highly peroxidisable fatty acids with less peroxidisable fatty acids? The influence of head group was examined by using the two most common phospholipids found in vertebrate membranes i.e. phosphatidylcholine and phosphatidylethanolamine species. Fatty acid pairings included 16:0/18:2 versus 18:2/18:2 and 16:0/22:6 versus 22:6/22:6. All phospholipids were incorporated into liposomes that were matched for their total PUFA content i.e. 25% PUFA/PUFA or 50% SAT/PUFA with phosphatidylcholine 16:0/16:0 used as the background phospholipid. An iron initiator (Fe²⁺/H₂O₂) was used to induce peroxidation and lipid hydroperoxide production was used to measure peroxidation. The results show that coupling of PUFA together on the same molecule does not increase peroxidation rates and therefore does not support the proposed hypothesis. The lower than expected levels of peroxidation measured for some phospholipid species (e.g. PtdEtn 22:6/22:6) is possibly due to the partitioning of these molecular species into the inner leaflet of the bilayer.
Collapse
|
18
|
Di L, Wang LP, Lu YN, He L, Lin ZX, Wu KJ, Ren QS, Wang JY. Protein adsorption and peroxidation of rat retinas under stimulation of a neural probe coated with polyaniline. Acta Biomater 2011; 7:3738-45. [PMID: 21704201 DOI: 10.1016/j.actbio.2011.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/18/2011] [Accepted: 06/07/2011] [Indexed: 11/27/2022]
Abstract
For the purpose of investigating the potential use of conducting polymers, i.e. polyaniline (PANi), as electrode coating material for improving the function of neural probes, a PANi-coated platinum (Pt) electrode was prepared by the in situ polymerization method. Protein adsorption was observed by atomic force microscopy/scanning electron microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, as well as quantification. Peroxidation of rat retinas was evaluated by determination of conjugated dienes and PLOOH, which were quantified by UV-visible spectrophotometer and high-performance liquid chromatography. The stability of PANi coating for 6 months was also estimated with an in vitro electrical stimulation system. This revealed that: (1) PANi with regular and compact nanoparticles 20-40 nm in diameter was successfully polymerized on the uncoated platinum electrode surface; (2) the PANi-coated Pt electrode adsorbed fewer retinal fragments and induced less peroxidation than the uncoated platinum electrode; (3) in contrast to the uncoated platinum electrode, the PANi-coated Pt electrode surface tended to aggregate retinal fragments rather than spread them, which may help to reduce inflammation and scar formation in long-term implantation; (4) the PANi coating exhibited excellent properties in terms of the intactness and the stable nanoparticle morphology after 6 months' electrical stimulation, while corrosion occurred on the uncoated platinum electrode after 1 month.
Collapse
|
19
|
Zhang C, Tian X, Luo Y, Meng X. Ginkgolide B attenuates ethanol-induced neurotoxicity through regulating NADPH oxidases. Toxicology 2011; 287:124-30. [DOI: 10.1016/j.tox.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 01/05/2023]
|
20
|
Fagali N, Catalá A. Melatonin and structural analogues do not possess antioxidant properties on Fe(2+)-initiated peroxidation of sonicated liposomes made of retinal lipids. Chem Phys Lipids 2011; 164:688-95. [PMID: 21827740 DOI: 10.1016/j.chemphyslip.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Melatonin and its structural analogues display antioxidant activity in vivo but their activity in model membranes is not very well known. In this study, we have investigated the antioxidant capacity of melatonin and structural analogues on Fe(2+)-initiated peroxidation of sonicated liposomes made of retinal lipids. The indoleamines were evaluated against butylated hydroxitoluene (BHT) which was chosen as a reference standard because of its high antioxidant capacity. After the addition of Fe(2+) as initiator of lipid peroxidation, quick production of conjugated dienes was observed. With addition of increasing concentrations of BHT the start of the reaction was delayed and initial reaction rates were lower. However, this reduction was not proportional to the increase in concentration. The start of the reaction and initial reaction rates were not modified in the presence of melatonin and its structural analogues. The formation of TBARS started immediately after the addition of Fe(2+). The increase in the concentration of BHT avoided the emergence of TBARS. Changes were not observed in the presence of melatonin or structural analogues. Retinal lipids showed a high content of docosahexaenoic (22: 6 (Δ4,7,10,13,16,19) acid, characteristic of this tissue. A little bit of that fatty acid was lost when sonicated liposomes were prepared with these retinal lipids. The polyunsaturated fatty acids (PUFAs) diminished significantly after incubation of liposomes with Fe(2+) during 1h. BHT preserved PUFAs whereas melatonin and its related indoleamines did not. These data reinforce the hypothesis that melatonin and structural analogues do not possess antioxidant properties per se in this liposomal model system.
Collapse
Affiliation(s)
- Natalia Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, (INIFTA-CCT La Plata-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | | |
Collapse
|
21
|
Catalá A. A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 2010; 399:318-23. [DOI: 10.1016/j.bbrc.2010.07.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
22
|
Ben Mansour H, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L. Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1371-1378. [PMID: 20369386 DOI: 10.1007/s11356-010-0323-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 03/04/2010] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Acid violet 7 (AV7), mostly used in food, paper, cosmetic, and especially in textile industries, was degraded by Pseudomonas putida mt-2 at concentrations up to 200 mg/l. MATERIALS AND METHODS In this study, toxicity of AV7, before and after biodegradation, was evaluated in vivo, in mouse bone marrow, by assessing the percentage of cells bearing different chromosome aberrations, membrane lipid peroxidation, and acetylcholinesterasic activity inhibition. The studies included same conditions for animal treatment, corresponding to increasing doses by intraperitoneal (ip) injection. RESULTS Results indicated that AV7 showed a significant ability to induce chromosome aberrations, lipid peroxidation, and acetylcholinesterase inhibitory effect. The toxicity of AV7 increased significantly after static biodegradation with P. putida mt-2 and totally disappeared after shaken incubation. In addition, the toxicity generated by the pure azo dye and the corresponding azoreduction metabolites (4'-aminoacetanilide (4'-AA) and 5-acetamido-2-amino-1-hydroxy-3,6-naphtalene disulfonic acid (5-ANDS)) were compared. 4'-AA and 5-ANDS would be responsible of static biodegradation medium toxicity. The present study demonstrates that P. putida mt-2, incubated under aerobic condition, has a catabolism which enables it to degrade AV7, and especially to completely detoxify the dye mixture.
Collapse
Affiliation(s)
- Hédi Ben Mansour
- Equipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB-EA3914), IUTUFR Sciences, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|