1
|
Bilog M, Vedad J, Capadona C, Profit AA, Desamero RZB. Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A. Biochim Biophys Acta Gen Subj 2024; 1868:130690. [PMID: 39117048 DOI: 10.1016/j.bbagen.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
Collapse
Affiliation(s)
- Marvin Bilog
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Jayson Vedad
- PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; Chemistry and Biochemistry Department, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, United States
| | - Charisse Capadona
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
| | - Adam A Profit
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Ruel Z B Desamero
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States.
| |
Collapse
|
2
|
Palizzotto C, Ferri F, Callegari C, Rossi F, Manfredi M, Carcangiu L, Gerardi G, Ferro S, Cavicchioli L, Müller E, Weiss M, Vogt A, Lavatelli F, Ricagno S, Hurley K, Zini E. Renal amyloid-A amyloidosis in cats: Characterization of proteinuria and biomarker discovery, and associations with kidney histology. J Vet Intern Med 2024; 38:205-215. [PMID: 37991136 PMCID: PMC10800178 DOI: 10.1111/jvim.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS Twenty-nine shelter cats. METHODS Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.
Collapse
Affiliation(s)
- Carlo Palizzotto
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Felippo Ferri
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Studio Veterinario Associato Vet2Vet di Ferri e PorporatoOrbassanoTOItaly
| | | | - Francesco Rossi
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Marcello Manfredi
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Laura Carcangiu
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Elizabeth Müller
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Marco Weiss
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Anne‐Catherine Vogt
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | | | - Stefano Ricagno
- Institute of Molecular and Translational CardiologyIRCCS Policlinico San DonatoMilanItaly
- Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
| | | | - Eric Zini
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Clinic for Small Animal Internal Medicine, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Tanaka M, Takarada T, Nadanaka S, Kojima R, Hosoi K, Machiba Y, Kitagawa H, Yamada T. Influences of amino-terminal modifications on amyloid fibril formation of human serum amyloid A. Arch Biochem Biophys 2023; 742:109615. [PMID: 37105512 DOI: 10.1016/j.abb.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Human serum amyloid A (SAA) is a precursor protein involved in AA amyloidosis. The N-terminal region of the SAA molecule is crucial for amyloid fibril formation, and therefore modifications in this region are considered to influence the pathogenesis of AA amyloidosis. In the present study, using the N-terminal peptide corresponding to the putative first helix region of the SAA molecule, we investigated the influences of N-terminal modifications on amyloid fibril formation. Spectroscopic analyses revealed that carbamoylation of the N-terminal amino group delayed the onset of amyloid fibril formation. From transmission electron microscopic observations, the N-terminal carbamoylated aggregate showed remarkably different morphologies from the unmodified control. In contrast, acetylation of the N-terminal amino group or truncation of N-terminal amino acid(s) considerably diminished amyloidogenic properties. Furthermore, we also tested the cell toxicity of each peptide aggregate on cultured cells by two cytotoxic assays. Irrespective of carbamoylation or acetylation, MTT assay revealed that SAA peptides reduced the reductive activity of MTT on cells, whereas no apparent increase in LDH release was observed during an LDH assay. In contrast, N-terminal truncation did not affect either MTT reduction or LDH release. These results suggest that N-terminal modification of SAA molecules can act as a switch to regulate susceptibility to AA amyloidosis.
Collapse
Affiliation(s)
- Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan.
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Risa Kojima
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Kimiko Hosoi
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yuki Machiba
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, 329-0498, Japan
| |
Collapse
|
4
|
Skibiszewska S, Żaczek S, Dybala-Defratyka A, Jędrzejewska K, Jankowska E. Influence of short peptides with aromatic amino acid residues on aggregation properties of serum amyloid A and its fragments. Arch Biochem Biophys 2020; 681:108264. [PMID: 31945312 DOI: 10.1016/j.abb.2020.108264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
Serum amyloid A variant 1.1 (SAA1.1) is an acute phase protein. In response to injury, inflammation or infection its production increases highly, which may lead to aggregation of the protein and accumulation of its deposits in various organs. Due to the cellular toxicity of the aggregates, as well as the fact that accumulated deposits are a burden that obstructs proper functioning of the affected tissues, it is vital to find a way to suppress the process of pathological aggregates formation. To make this possible, it is necessary to investigate thoroughly the oligomerization process and recognize factors that may influence its course. Some previous studies showed that aromatic interactions are important to the potential of an inhibitor to suppress the aggregation process. In our research we had proved that a five-residue peptide RSFFS (saa1-5) is an efficient inhibitor of aggregation of the most amyloidogenic fragment of SAA1.1, SAA1-12. In the present work the oligomerization and aggregation propensity of SAA1-12 was compared to that of SAA1-27, in order to determine the contribution of the sequence which extends beyond the most amyloidogenic region but encompasses residues reportedly involved in the stabilization of the SAA native conformation. Thioflavin T fluorescence assay, quantitative chromatographic analysis of the insoluble fraction and transmission electron microscopy allowed for a deeper insight into the SAA aggregation process and the morphology of aggregates. Substitutions of Phe3 and/or Phe4 residues in saa1-5 sequence with tryptophan, tyrosine, homophenylalanine, naphthylalanine and β,β-diphenylalanine allowed to study the influence of different aromatic systems on the aggregation of SAA1-12 and SAA1-27, and evaluate these results in relation to hSAA1.1 protein. Our results indicate that compounds with aromatic moieties can affect the course of the aggregation process and change the ratio between the soluble and insoluble aggregates.
Collapse
Affiliation(s)
- Sandra Skibiszewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Katarzyna Jędrzejewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
5
|
Zheng H, Li H, Zhang J, Fan H, Jia L, Ma W, Ma S, Wang S, You H, Yin Z, Li X. Serum amyloid A exhibits pH dependent antibacterial action and contributes to host defense against Staphylococcus aureus cutaneous infection. J Biol Chem 2019; 295:2570-2581. [PMID: 31819008 DOI: 10.1074/jbc.ra119.010626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA), one of the major highly conserved acute-phase proteins in most mammals, is predominantly produced by hepatocytes and also by a variety of cells in extrahepatic tissues. It is well-known that the expression of SAA is sharply increased in bacterial infections. However, the exact physiological function of SAA during bacterial infection remains unclear. Herein, we showed that SAA expression significantly increased in abscesses of Staphylococcus aureus cutaneous infected mice, which exert direct antibacterial effects by binding to the bacterial cell surface and disrupting the cell membrane in acidic conditions. Mechanically, SAA disrupts anionic liposomes by spontaneously forming small vesicles or micelles under acidic conditions. Especially, the N-terminal region of SAA is necessary for membrane disruption and bactericidal activity. Furthermore, we found that mice deficient in SAA1/2 were more susceptible to infection by S. aureus In addition, the expression of SAA in infected skin was regulated by interleukin-6. Taken together, these findings support a key role of the SAA in host defense and may provide a novel therapeutic strategy for cutaneous bacterial infection.
Collapse
Affiliation(s)
- Han Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haifeng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hanlu Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lina Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenqiang Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuoqian Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shenghong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Zhinan Yin
- First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510310, China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
6
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
7
|
Tanaka M, Nishimura A, Takeshita H, Takase H, Yamada T, Mukai T. Effect of lipid environment on amyloid fibril formation of human serum amyloid A. Chem Phys Lipids 2017; 202:6-12. [DOI: 10.1016/j.chemphyslip.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
8
|
Zhu S, Wang Y, Chen W, Li W, Wang A, Wong S, Bao G, Li J, Yang H, Tracey KJ, D’Angelo J, Wang H. High-Density Lipoprotein (HDL) Counter-Regulates Serum Amyloid A (SAA)-Induced sPLA2-IIE and sPLA2-V Expression in Macrophages. PLoS One 2016; 11:e0167468. [PMID: 27898742 PMCID: PMC5127586 DOI: 10.1371/journal.pone.0167468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
Human serum amyloid A (SAA) has been demonstrated as a chemoattractant and proinflammatory mediator of lethal systemic inflammatory diseases. In the circulation, it can be sequestered by a high-density lipoprotein, HDL, which carries cholesterol, triglycerides, phospholipids and apolipoproteins (Apo-AI). The capture of SAA by HDL results in the displacement of Apo-AI, and the consequent inhibition of SAA’s chemoattractant activities. It was previously unknown whether HDL similarly inhibits SAA-induced sPLA2 expression, as well as the resultant HMGB1 release, nitric oxide (NO) production and autophagy activation. Here we provided compelling evidence that human SAA effectively upregulated the expression and secretion of both sPLA2-IIE and sPLA2-V in murine macrophages, which were attenuated by HDL in a dose-dependent fashion. Similarly, HDL dose-dependently suppressed SAA-induced HMGB1 release, NO production, and autophagy activation. In both RAW 264.7 cells and primary macrophages, HDL inhibited SAA-induced secretion of several cytokines (e.g., IL-6) and chemokines (e.g., MCP-1 and RANTES) that were likely dependent on functional TLR4 signaling. Collectively, these findings suggest that HDL counter-regulates SAA-induced upregulation and secretion of sPLA2-IIE/V in addition to other TLR4-dependent cytokines and chemokines in macrophage cultures.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yongjun Wang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Weiqiang Chen
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Angelina Wang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sarabeth Wong
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Guoqiang Bao
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Department of General Surgery, Tangdu Hospital, The 4 Military Medical University, Xi'an, Shaanxi, China
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J. Tracey
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - John D’Angelo
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein. Biosci Rep 2016; 36:BSR20160075. [PMID: 27422844 PMCID: PMC4986410 DOI: 10.1042/bsr20160075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Serum amyloid A (SAA) levels increase during acute and chronic inflammation and are mainly associated with high-density lipoprotein (HDL). In the present study, we investigated the effect of SAA on the composition, surface charge, particle size and antioxidant ability of HDL using recombinant human SAA (rhSAA) and HDL samples from patients with inflammation. We confirmed that rhSAA bound to HDL3 and released apolipoprotein A-I (apoA-I) from HDL without an apparent change in particle size. Forty-one patients were stratified into three groups based on serum SAA concentrations: Low (SAA ≤ 8 μg/ml), Middle (8 < SAA ≤ 100 μg/ml) and High (SAA > 100 μg/ml). The ratios of apoA-I to total protein mass, relative cholesterol content and negative charge of HDL samples obtained from patients with high SAA levels were lower than that for samples from patients with low SAA levels. Various particle sizes of HDL were observed in three groups regardless of serum SAA levels. Antioxidant ability of rhSAA, evaluated as the effect on the formation of conjugated diene in low-density lipoprotein (LDL) induced by oxidation using copper sulfate, was higher than that of apoA-I. Consistent with this result, reconstituted SAA-containing HDL (SAA-HDL) indicated higher antioxidant ability compared with normal HDL. Furthermore, HDL samples obtained from High SAA group patients also showed the highest antioxidant ability among the three groups. Consequently, SAA affects the composition and surface charge of HDL by displacement of apoA-I and enhances its antioxidant ability.
Collapse
|
10
|
Li W, Zhu S, Li J, D'Amore J, D'Angelo J, Yang H, Wang P, Tracey KJ, Wang H. Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Mol Med 2015; 21:515-25. [PMID: 26052716 DOI: 10.2119/molmed.2015.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) proteins are known to be surrogate markers of sepsis, but their pathogenic roles remain poorly elucidated. Here we provide evidence to support a possible role of SAA as a pathogenic mediator of lethal sepsis. In a subset of septic patients for which serum high mobility group box 1 (HMGB1) levels paralleled the clinical scores, some anti-HMGB1 antibodies detected a 12-kDa protein belonging to the SAA family. In contrast to the most abundant SAA1, human SAA induced double-stranded RNA-activated protein kinase R (PKR) expression and HMGB1 release in the wild-type, but not toll-like receptor 4/receptor for advanced glycation end products (TLR4/RAGE)-deficient, macrophages. Pharmacological inhibition of PKR phosphorylation blocked SAA-induced HMGB1 release, suggesting an important role of PKR in SAA-induced HMGB1 release. In animal models of lethal endotoxemia and sepsis, recombinant SAA exacerbated endotoxemic lethality, whereas SAA-neutralizing immunoglobulins G (IgGs) significantly improved animal survival. Collectively, these findings have suggested SAA as an important mediator of inflammatory diseases. Highlights of this study include: human SAA is possibly only expressed in a subset of septic patients; SAA induces HMGB1 release via TLR4 and RAGE receptors; SAA supplementation worsens the outcome of lethal endotoxemia; whereas SAA-neutralizing antibodies confer protection against lethal endotoxemia and sepsis.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jason D'Amore
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
11
|
Zou L, Liu B. Identification of a Serum amyloid A gene and the association of SNPs with Vibrio-resistance and growth traits in the clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2015; 43:301-309. [PMID: 25602707 DOI: 10.1016/j.fsi.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Serum amyloid A (SAA), an acute response protein as well as an apolipoprotein, is considered to play crucial roles in both innate immunity and lipid metabolism. In this study, a SAA gene (MmSAA) was identified in the clam Meretrix meretrix. The full length DNA of MmSAA was 1407bp, consisting of three exons and two introns. The distribution of MmSAA in clam tissues was examined with the highest expression in hepatopancreas. In response to the Vibrio parahaemolyticus challenge, MmSAA mRNA showed significantly higher expression at 24 h post-challenge in experimental clams (P < 0.05). Forty-eight single nucleotide polymorphisms (SNPs) in the DNA partial sequence of MmSAA were discovered and examined for their association with Vibrio-resistance and growth traits, respectively. The single SNP association analysis indicated that five single SNPs (g.42, g.72, g.82, g.147 and g.165) were significantly associated with Vibrio-resistance (P < 0.05). Haplotype analysis produced additional support for association with the Chi-square values 6.393 (P = 0.012). Among the five selected SNPs, the effect of a missense mutation (g.82, A → G) was detected by site-directed mutagenesis with fusion expression of protein assay, and the result showed that the recombinant plasmids containing wild-type pET30a-MmSAA had more inhibition effect than the mutant ones on the growth rate of the host bacteria. In addition, four growth traits of the clams in 09G3SPSB population were recorded and the SNP g.176 was found to be significantly associated with the growth traits with the Global score value 0.790 (P = 0.015). Our findings suggested that common genetic variation in MmSAA might contribute to the risk of susceptibility to Vibrio infection and might be associated with the growth traits in the clams M. meretrix, and more works are still needed to validate these SNPs as potential markers for actual selective breeding.
Collapse
Affiliation(s)
- Linhu Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
12
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|
13
|
Takase H, Furuchi H, Tanaka M, Yamada T, Matoba K, Iwasaki K, Kawakami T, Mukai T. Characterization of reconstituted high-density lipoprotein particles formed by lipid interactions with human serum amyloid A. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1467-74. [PMID: 25063355 DOI: 10.1016/j.bbalip.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
The acute-phase human protein serum amyloid A (SAA) is enriched in high-density lipoprotein (HDL) in patients with inflammatory diseases. Compared with normal HDL containing apolipoprotein A-I, which is the principal protein component, characteristics of acute-phase HDL containing SAA remain largely undefined. In the present study, we examined the physicochemical properties of reconstituted HDL (rHDL) particles formed by lipid interactions with SAA. Fluorescence and circular dichroism measurements revealed that although SAA was unstructured at physiological temperature, α-helix formation was induced upon binding to phospholipid vesicles. SAA also formed rHDL particles by solubilizing phospholipid vesicles through mechanisms that are common to other exchangeable apolipoproteins. Dynamic light scattering and nondenaturing gradient gel electrophoresis analyses of rHDL after gel filtration revealed particle sizes of approximately 10nm, and a discoidal shape was verified by transmission electron microscopy. Thermal denaturation experiments indicated that SAA molecules in rHDL retained α-helical conformations at 37°C, but were almost completely denatured around 60°C. Furthermore, trypsin digestion experiments showed that lipid binding rendered SAA molecules resistant to protein degradation. In humans, three major SAA1 isoforms (SAA1.1, 1.3, and 1.5) are known. Although these isoforms have different amino acids at residues 52 and 57, no major differences in physicochemical properties between rHDL particles resulting from lipid interactions with SAA isoforms have been found. The present data provide useful insights into the effects of SAA enrichment on the physicochemical properties of HDL.
Collapse
Affiliation(s)
- Hiroka Takase
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Hiroki Furuchi
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masafumi Tanaka
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Toshiyuki Yamada
- Department of Clinical and Laboratory Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kyoko Matoba
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Toru Kawakami
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| |
Collapse
|
14
|
Landreh M, Johansson J, Jörnvall H. Separate molecular determinants in amyloidogenic and antimicrobial peptides. J Mol Biol 2014; 426:2159-66. [PMID: 24650898 DOI: 10.1016/j.jmb.2014.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Several amyloid-forming and antimicrobial peptides (AMYs and AMPs) have the ability to bind to and damage cell membranes. In addition, some AMYs possess antimicrobial activity and some AMPs form amyloid-like fibrils, relating the two peptide types and their properties. However, a comparison of their sequence characteristics reveals important differences. The high β-strand and aggregation propensities typical of AMYs are largely absent in α-helix-forming AMPs, which are instead marked by a strong amphipathic moment not generally found in AMYs. Although a few peptides, for example, islet amyloid polypeptide and dermaseptin S9, combine some determinants of both groups, the structural distinctions suggest that antimicrobial activity and amyloid formation are separate features not generally associated.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jan Johansson
- KI Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Takase H, Tanaka M, Miyagawa S, Yamada T, Mukai T. Effect of amino acid variations in the central region of human serum amyloid A on the amyloidogenic properties. Biochem Biophys Res Commun 2014; 444:92-7. [PMID: 24440699 DOI: 10.1016/j.bbrc.2014.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4°C, but were unstructured at 37°C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37°C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4°C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.
Collapse
Affiliation(s)
- Hiroka Takase
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masafumi Tanaka
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Sachiko Miyagawa
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| |
Collapse
|
16
|
Chung YM, Goyette J, Tedla N, Hsu K, Geczy CL. S100A12 suppresses pro-inflammatory, but not pro-thrombotic functions of serum amyloid A. PLoS One 2013; 8:e62372. [PMID: 23638054 PMCID: PMC3634854 DOI: 10.1371/journal.pone.0062372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
S100A12 is elevated in the circulation in patients with chronic inflammatory diseases and recent studies indicate pleiotropic functions. Serum amyloid A induces monocyte cytokines and tissue factor. S100A12 did not stimulate IL-6, IL-8, IL-1β or TNF-α production by human peripheral blood mononuclear cells but low amounts consistently reduced cytokine mRNA and protein levels induced by serum amyloid A, by ∼49% and ∼46%, respectively. However, S100A12 did not affect serum amyloid A-induced monocyte tissue factor. In marked contrast, LPS-induced cytokines or tissue factor were not suppressed by S100A12. S100A12 did not alter cytokine mRNA stability or the cytokine secretory pathway. S100A12 and serum amyloid A did not appear to form complexes and although they may have common receptors, suppression was unlikely via receptor competition. Serum amyloid A induces cytokines via activation of NF-κB and the MAPK pathways. S100A12 reduced serum amyloid A-, but not LPS-induced ERK1/2 phosphorylation to baseline. It did not affect JNK or p38 phosphorylation or the NF-κB pathway. Reduction in ERK1/2 phosphorylation by S100A12 was unlikely due to changes in intracellular reactive oxygen species, Ca2+ flux or to recruitment of phosphatases. We suggest that S100A12 may modulate sterile inflammation by blunting pro-inflammatory properties of lipid-poor serum amyloid A deposited in chronic lesions where both proteins are elevated as a consequence of macrophage activation.
Collapse
Affiliation(s)
- Yuen Ming Chung
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenneth Hsu
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
17
|
Soler L, Molenaar A, Merola N, Eckersall PD, Gutiérrez A, Cerón JJ, Mulero V, Niewold TA. Why working with porcine circulating serum amyloid A is a pig of a job. J Theor Biol 2012; 317:119-25. [PMID: 23073471 DOI: 10.1016/j.jtbi.2012.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/06/2012] [Accepted: 10/06/2012] [Indexed: 01/01/2023]
Abstract
Serum amyloid A (SAA) is a major acute phase protein in most species, and is widely employed as a health marker. Systemic SAA isoforms (SAA1, and SAA2) are apolipoproteins synthesized by the liver which associate with high density lipoproteins (HDL). Local SAA (SAA3) isoforms are synthesized in other tissues and are present in colostrums, mastitic milk and mammary dry secretions. Of systemic SAA the bulk is monomeric and bound to HDL, and a small proportion is found in serum in a multimeric form with a buried HDL binding site. In most species, systemic SAA could easily be studied by purifying it from serum of diseased individuals by hydrophobic interaction chromatography methods. For years, we were not able to isolate systemic pig SAA using the latter methods, and found that the bulk of pig SAA did not reside in the HDL-rich serum fractions but in the soluble protein fraction mainly as a multimeric protein. Based on these surprising results, we analysed in silico the theoretical properties and predicted the secondary structure of pig SAA by using the published pig primary SAA amino acid sequence. Results of the analysis confirmed that systemic pig SAA had the highest homology with local SAA3 which in other species is the isoform associated with non-hepatic production in tissues such as mammary gland and intestinal epithelium. Furthermore, the primary sequence of the pig SAA N-terminal HDL binding site did differ considerably from SAA1/2. Secondary structure analysis of the predicted alpha-helical structure of this HDL binding site showed a considerable reduction in hydrophobicity compared to SAA1/2. Based on these results, it is argued that systemic acute phase SAA in the pig has the structural properties of locally produced SAA (SAA3). It is proposed that in pig SAA multimers the charged N-terminal sequence is buried, which would explain their different properties. It is concluded that pig systemic SAA is unique compared to other species, which raises questions about the proposed importance of acute phase SAA in HDL metabolism during inflammation in this species.
Collapse
Affiliation(s)
- L Soler
- Department of Animal Medicine and Surgery, University of Murcia, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nordling E, Abraham-Nordling M. Colonic amyloidosis, computational analysis of the major amyloidogenic species, Serum Amyloid A. Comput Biol Chem 2012; 39:29-34. [PMID: 22885776 DOI: 10.1016/j.compbiolchem.2012.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
Abstract
Amyloidosis is characterized by misfolding of proteins. The clinical gastrointestinal manifestations of amyloidosis may mimic other disease, such as inflammatory bowel disease or colonic cancer. As these patients have a high risk for bleeding and poor wound healing following surgery it is important to diagnose them correctly and do a careful preoperative assessment. The most common form of colonic amyloidosis is caused by Serum Amyloid A (SAA), an acute phase protein of unknown function. It is expressed in response to inflammation and the increased levels may lead to amyloidosis. The main treatment is to suppress the acute phase response and thereby reduce production of SAA. As no structure for SAA is available we aim to perform an in silico assessment of its structural and fibrillation properties. In the paper we propose an ab initio model of the structure of SAA, which consists of a five membered helical bundle with a fold related to the tetratricopeptide repeat domain. As there are uncertainties relating to the packing of the helices, each helical region is subjected to triplicate molecular dynamics simulations to assess the integrity of the structural region. The first helix, stretching from residues 1 to 13, is the least stable according to the simulations; almost all of the helical conformation is lost during the 10 ns simulations, whereas the other helices maintain portions that remain in an helical conformation in at least 80% of the simulations. All helices are also subjected to a single 100 ns simulation to investigate how the secondary structure develops over time. In them helix 1 adopts a β-hairpin structure similar to other fibril forming proteins. The β-hairpin can in turn multimerise and form a mature fibril structure. The mechanism behind the conformational transition appears to be driven by interactions of side chains of charged residues, particularly Arginine 1. It exchanges interaction partners in the simulation and stabilizes intermediate conformations on the folding pathway to the final β-hairpin.
Collapse
Affiliation(s)
- Erik Nordling
- IFM Bioinformatics, Linköping University, Linköping, Sweden
| | | |
Collapse
|
19
|
Ribeiro JMC, Labruna MB, Mans BJ, Maruyama SR, Francischetti IMB, Barizon GC, de Miranda Santos IKF. The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:332-42. [PMID: 22306723 PMCID: PMC3351099 DOI: 10.1016/j.ibmb.2012.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/19/2011] [Accepted: 01/11/2012] [Indexed: 05/14/2023]
Abstract
The hosts for Antricola delacruzi ticks are insectivorous, cave-dwelling bats on which only larvae are found. The mouthparts of nymphal and adult A. delacruzi are compatible with scavenging feeding because the hypostome is small and toothless. How a single blood meal of a larva provides energy for several molts as well as for oviposition by females is not known. Adults of A. delacruzi possibly feed upon an unknown food source in bat guano, a substrate on which nymphal and adult stages are always found. Guano produced by insectivorous bats contains twice the amount of protein and 60 times the amount of iron as beef. In addition, bacteria and chitin-rich fungi proliferate on guano. Comparative data on the transcriptome of the salivary glands of A. delacruzi is nonexistent and would help to understand the physiological adaptations of salivary glands that accompany different sources of food as well as the steps taken by the Acari toward haematophagy, believed to have evolved from scavenging dead animals. Annotation of the transcriptome of salivary glands from female instars of A. delacruzi collected on guano categorized 5.7% of the clusters of expressed genes as putative secreted proteins. They included abundantly expressed TIL-domain-containing proteins (possible anti-microbials), an abundantly expressed protein similar to a serum amyloid found in the sialotranscriptomes of Ornithodoros spp., a savignygrin, a family of mucin/peritrophin/cuticle-like proteins, anti-microbials and an HIV envelope-like glycoprotein also found in soft ticks. When comparing the transcriptome of A. delacruzi with those of blood-feeding female soft and hard ticks some notable differences were observed; they consisted of the following transcripts over- or under-represented or absent in the sialotranscriptome of A. delacruzi that may reflect its source of food: ferritin, mucins with chitin-binding domains and TIL-domain-containing proteins versus lipocalins, basic tail proteins, metalloproteases, glycine-rich proteins and Kunitz protease inhibitors, respectively.
Collapse
Affiliation(s)
- José Marcos C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marcelo B. Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ben J. Mans
- Parasites, Vectors and Vector-Borne Diseases, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Canavaci Barizon
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabel K. F. de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Correspondance to: Isabel K. F. de Miranda Santos, Departmento de of Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil, Tel: +55 16 3602 3267, Fax: +55 16 3602 4590,
| |
Collapse
|
20
|
Abstract
Serum amyloid A (SAA), a protein originally of interest primarily to investigators focusing on AA amyloidogenesis, has become a subject of interest to a very broad research community. SAA is still a major amyloid research topic because AA amyloid, for which SAA is the precursor, is the prototypic model of in vivo amyloidogenesis and much that has been learned with this model has been applicable to much more common clinical types of amyloid. However, SAA has also become a subject of considerable interest to those studying (i) the synthesis and regulation of acute phase proteins, of which SAA is a prime example, (ii) the role that SAA plays in tissue injury and inflammation, a situation in which the plasma concentration of SAA may increase a 1000-fold, (iii) the influence that SAA has on HDL structure and function, because during inflammation the majority of SAA is an apolipoprotein of HDL, (iv) the influence that SAA may have on HDL's role in reverse cholesterol transport, and therefore, (v) SAA's potential role in atherogenesis. However, no physiological role for SAA, among many proposed, has been widely accepted. None the less from an evolutionary perspective SAA must have a critical physiological function conferring survival-value because SAA genes have existed for at least 500 million years and SAA's amino acid sequence has been substantially conserved. An examination of the published literature over the last 40 years reveals a great deal of conflicting data and interpretation. Using SAA's conserved amino acid sequence and the physiological effects it has while in its native structure, namely an HDL apolipoprotein, we argue that much of the confounding data and interpretation relates to experimental pitfalls not appreciated when working with SAA, a failure to appreciate the value of physiologic studies done in the 1970-1990 and a current major focus on putative roles of SAA in atherogenesis and chronic disease. When viewed from an evolutionary perspective, published data suggest that acute-phase SAA is part of a systemic response to injury to recycle and reuse cholesterol from destroyed and damaged cells. This is accomplished through SAA's targeted delivery of HDL to macrophages, and its suppression of ACAT, the enhancement of neutral cholesterol esterase and ABC transporters in macrophages. The recycling of cholesterol during serious injury, when dietary intake is restricted and there is an immediate and critical requirement of cholesterol in the generation of myriads of cells involved in inflammation and repair responses, is likely SAA's important survival role. Data implicating SAA in atherogenesis are not relevant to its evolutionary role. Furthermore, in apoE(-/-) mice, domains near the N- and C- termini of SAA inhibit the initiation and progression of aortic lipid lesions illustrating the conflicting nature of these two sets of data.
Collapse
|
21
|
Egashira M, Takase H, Yamamoto I, Tanaka M, Saito H. Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch Biochem Biophys 2011; 511:101-6. [PMID: 21569756 DOI: 10.1016/j.abb.2011.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 02/08/2023]
Abstract
Human serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Although several studies have been performed, a detailed understanding of the molecular mechanism for SAA fibrillation remains elusive. Glycosaminoglycans such as heparin are suggested to serve as scaffolds in amyloid fibril formation in some cases. In the present study, amyloidogenic properties of synthetic fragment peptides corresponding to the N-terminal (residues 1-27), central (residues 43-63), and C-terminal (residues 77-104) regions of SAA molecule induced by heparin were examined using fluorescence, circular dichroism (CD), and electron microscopy. Fluorescence and CD measurements demonstrated that SAA (1-27) peptide is evidently involved in heparin-induced amyloidogenesis. Correspondingly, relatively minor changes in fluorescence and a quite different pattern in the CD spectrum were observed in SAA (43-63) peptide. In contrast, SAA (77-104) peptide did not show any changes induced by heparin. Transmission electron microscopy indicated that SAA (1-27) peptide forms short and straight fibrils, whereas SAA (43-63) peptide forms much longer and seemingly elastic fibrils. These results suggest that the N-terminal region plays a crucial role as a rigid core and the central region facilitates the elongation of fibrils in heparin-induced amyloidogenesis of SAA molecule.
Collapse
Affiliation(s)
- Masashi Egashira
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | | | | | | | | |
Collapse
|