1
|
Ferreira GA. Geometric features in lyotropic liquid crystalline phase transitions observed in aqueous surfactant systems. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1924192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guilherme A. Ferreira
- Department of Physical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador - BA, Brazil
| |
Collapse
|
2
|
Ogawa S, Honda K, Tsubomura T, Totani K, Takahashi I, Hara S. Physicochemical characterization of 6-O-acyl trehalose fatty acid monoesters in desiccated system. Chem Phys Lipids 2018; 216:80-90. [DOI: 10.1016/j.chemphyslip.2018.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
3
|
Percebom AM, Ferreira GA, Catini DR, Bernardes JS, Loh W. Phase Behavior Controlled by the Addition of Long-Chain n-Alcohols in Systems of Cationic Surfactant/Anionic Polyion Complex Salts and Water. J Phys Chem B 2018; 122:4861-4869. [PMID: 29668285 DOI: 10.1021/acs.jpcb.8b01788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phase behavior of surfactants in water may be affected by the addition of a third component, and the present study discusses how long-chain n-alcohols affect phase transitions of systems formed by the surfactant hexadecyltrimethylammonium bromide, C16TAB, or its complex salts formed with polyacrylate, C16TAPA30, as well as other previously reported complex salts/water/alcohol systems. Structural characterization by X-ray diffraction patterns at small and wide angles and different temperatures was performed for samples containing n-decanol, n-dodecanol, or n-tetradecanol. Differential scanning calorimetry (DSC) was also used to study the phase transition. The results allowed us to observe and understand the coexistence of lamellar gel (Lβ) and lamellar liquid-crystal (Lα) phases, elucidating the structure of a previously reported mesophase, proposing an alternative assignment. Whereas the chain-melting transition is well-known to be sharp for lipids, we have found that it is broader for C16TAB and C16TAPA in the presence of these n-alcohols. We have investigated the effects of their composition and chain length on the temperature and enthalpy of transition. This elucidates why the addition of n-alcohols with chains slightly shorter than that of the surfactants leads to the formation of an ordered gel-like lamellar phase (Lβ). n-Alcohols act as neutral cosurfactants, leading to more packing, and all of the factors converge to a limit situation, associated with a common critical area occupied by each alkyl chain. We compared our results with other mesophase systems from the literature, demonstrating that the same trends of phase behavior occur for complex salts of other polyelectrolytes with alkyltrimethylammonium surfactants.
Collapse
Affiliation(s)
- Ana M Percebom
- Institute of Chemistry , University of Campinas (UNICAMP) , PO Box 6154, 13084-970 Campinas , São Paulo , Brazil.,Department of Chemistry , Pontifical Catholic University of Rio de Janeiro , 22451-900 Rio de Janeiro , Rio de Janeiro , Brazil
| | - Guilherme A Ferreira
- Institute of Chemistry , University of Campinas (UNICAMP) , PO Box 6154, 13084-970 Campinas , São Paulo , Brazil
| | - Daniel Rege Catini
- Institute of Chemistry , University of Campinas (UNICAMP) , PO Box 6154, 13084-970 Campinas , São Paulo , Brazil
| | - Juliana S Bernardes
- Institute of Chemistry , University of Campinas (UNICAMP) , PO Box 6154, 13084-970 Campinas , São Paulo , Brazil.,Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM) , 13083-970 Campinas , São Paulo , Brazil
| | - Watson Loh
- Institute of Chemistry , University of Campinas (UNICAMP) , PO Box 6154, 13084-970 Campinas , São Paulo , Brazil
| |
Collapse
|
4
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Migas UM, Abbey L, Velasco-Torrijos T, McManus JJ. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane. SOFT MATTER 2014; 10:3978-3983. [PMID: 24733306 DOI: 10.1039/c4sm00147h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycolipid phase behaviour is less well understood than for many phospholipids, but due to their structural and functional diversity, glycolipids represent an important group of amphiphiles from which biological function is derived. Here we have incorporated a synthetic glycolipid in binary mixtures with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) into giant unilamellar vesicles (GUVs) at biologically relevant concentrations and observed the phase behaviour of the lipid mixtures for a range of glycolipid concentrations. At low concentrations, the glycolipid is fully dispersed in the GUV membrane. At glycolipid molar concentrations above 10%, the formation of lipid tubules is observed, and is consistent with the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can be formed. This work may offer insights into the biological function of glycolipids and the challenges in formulating them for use in industrial applications.
Collapse
Affiliation(s)
- Urszula M Migas
- Department of Chemistry, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland.
| | | | | | | |
Collapse
|