1
|
Grodzicka M, Michlewska S, Buczkowski A, Ortega P, de la Mata FJ, Bryszewska M, Ionov M. Effect of polyphenolic dendrimers on biological and artificial lipid membranes. Chem Phys Lipids 2024; 265:105444. [PMID: 39265880 DOI: 10.1016/j.chemphyslip.2024.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane. The increase in the fluorescence anisotropy of DPH and TMA-DPH probes incorporated into erythrocyte membranes predicted the ability of dendrimers to affect membrane fluidity in the hydrophobic interior and hydrophilic/polar region of a lipid bilayer. The presence of caffeic acid and polyethylene glycol chains in the dendrimer structure affected the thermodynamical properties of the membrane lipid matrix.
Collapse
Affiliation(s)
- Marika Grodzicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Adam Buczkowski
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Division of Biophysical Chemistry, Pomorska 165, Lodz 90-236, Poland
| | - Paula Ortega
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland
| | - Maksim Ionov
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; Mazovian Academy in Plock, Collegium Medicum, Faculty of Medicine, Pl. Dabrowskiego 2, Plock 09-402, Poland
| |
Collapse
|
2
|
Wrobel D, Edr A, Zemanova E, Strašák T, Semeradtova A, Maly J. The influence of amphiphilic carbosilane dendrons on lipid model membranes. Chem Phys Lipids 2023; 255:105314. [PMID: 37356611 DOI: 10.1016/j.chemphyslip.2023.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Amphiphilic dendrons represent a relatively novel class of molecules which may show many unique properties suitable for applications in a field of molecular biology and nanomedicine. They were frequently studied as platforms suitable for drug delivery systems as were, e.g. polymersomes or hybrid lipid-polymer nanoparticles. Recently, natural extracellular lipid vesicles (EVs), called exosomes (EXs), were shown to be a promising candidate in drug delivery applications. Formation of hybrid exosome-dendron nanovesicles could bring benefits in their simple conjugation with selective targeting moieties. Unfortunately, the complex architecture of biological membranes, EXs included, makes obstacles in elucidating the important parameters and mechanisms of interaction with the artificial amphiphilic structures. The aim of the presented work was to study the interaction of two types of amphiphilic carbosilane dendritic structures (denoted as DDN-1 and DDN-2) suitable for further modification with streptavidin (DDN-1) or using click-chemistry approach (DDN-2), with selected neutral and negatively charged lipid model membranes, partially mimicking the basic properties of natural EXs biomembranes. To meet the goal, a number of biophysical methods were used for determination of the degree and mechanisms of the interaction. The results showed that the strength of interactions of amphiphilic dendrons with liposomes was related with surface charge of liposomes. Several steps of interactions were disclosed. The initialization step was mainly coupled with amphiphilic dendrons - liposomes surface interaction resulting in destabilization of large self-assembled amphiphilic dendrons structures. Such destabilization was more significant with liposomes of higher negative charge. With increasing concentration of amphiphilic dendrons in a solution the interactions were taking place also in the hydrophobic part of bilayer. Further increase of nanoparticle concentration resulted in a gradual dendritic cluster formation in a lipid bilayer structure. Due to high affinity of amphiphilic dendrons to model lipid bilayers the conclusion can be drawn that they represent promising platforms also for decoration of exosomes or other kinds of natural lipid vehicles. Such organized hybrid dendron-lipid biomembranes may be advantageous for their subsequent post-functionalization with small molecules, large biomacromolecules or polymers suitable for targeted drug-delivery or theranostic applications.
Collapse
Affiliation(s)
- Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic.
| | - Antonin Edr
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Eliska Zemanova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Tomáš Strašák
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Alena Semeradtova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| |
Collapse
|
3
|
Complexes of Cationic Pyridylphenylene Dendrimers with Anionic Liposomes: The Role of Dendrimer Composition in Membrane Structural Changes. Int J Mol Sci 2023; 24:ijms24032225. [PMID: 36768548 PMCID: PMC9917332 DOI: 10.3390/ijms24032225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
In the last decades, dendrimers have received attention in biomedicine that requires detailed study on the mechanism of their interaction with cell membranes. In this article, we report on the role of dendrimer structure in their interaction with liposomes. Here, the interactions between cationic pyridylphenylene dendrimers of the first, second, and third generations with mixed or completely charged pyridyl periphery (D16+, D215+, D229+, and D350+) with cholesterol-containing (CL/Chol/DOPC) anionic liposomes were investigated by microelectrophoresis, dynamic light scattering, fluorescence spectroscopy, and conductometry. It was found that the architecture of the dendrimer, namely the generation, the amount of charged pyridynium groups, the hydrophobic phenylene units, and the rigidity of the spatial structure, determined the special features of the dendrimer-liposome interactions. The binding of D350+ and D229+ with almost fully charged peripheries to liposomes was due to electrostatic forces: the dendrimer molecules could be removed from the liposomal surfaces by NaCl addition. D350+ and D229+ did not display a disruptive effect toward membranes, did not penetrate into the hydrophobic lipid bilayer, and were able to migrate between liposomes. For D215+, a dendrimer with a mixed periphery, hydrophobic interactions of phenylene units with the hydrocarbon tails of lipids were observed, along with electrostatic complexation with liposomes. As a result, defects were formed in the bilayer, which led to irreversible interactions with lipid membranes wherein there was no migration of D215+ between liposomes. A first-generation dendrimer, D16+, which was characterized by small size, a high degree of hydrophobicity, and a rigid structure, when interacting with liposomes caused significant destruction of liposomal membranes. Evidently, this interaction was irreversible: the addition of salt did not lead to the dissociation of the complex.
Collapse
|
4
|
Sanz Del Olmo N, García JC, Gómez R, de la Mata FJ, Ortega P. Heterofunctional carbosilane polyphenolic dendrons: new antioxidants platforms. RSC Adv 2022; 12:10280-10288. [PMID: 35424993 PMCID: PMC8972098 DOI: 10.1039/d1ra08224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in different human pathophysiological processes. ROS, together with nitrogen reactive species, generated as by-products of cellular metabolism or external factors, affects intracellular redox homeostasis. Redox-active groups found in proteins and other compounds such as polyphenols are involved in maintaining intracellular redox homeostasis. In this work, a new family of heterofunctional first-generation carbosilane dendrons functionalised with different polyphenols at the focal point and dimethylammonium groups at the periphery has been obtained through two synthetic strategies: reductive amination and straightforward amidation reaction. Their antioxidant activity has been evaluated through two spectrophotometric methods: ferric reducing antioxidant power (FRAP) assay and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay to establish a correlation between the number of hydroxyl groups and the antioxidant activity. Combination of carbosilane dendritic structures and polyphenol to obtain new scavenging systems.![]()
Collapse
Affiliation(s)
- Natalia Sanz Del Olmo
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - Juan Carlos García
- University of Alcala. Department of Biology of Systems, Biochemistry and Molecular Biology Unit Madrid Spain
| | - Rafael Gómez
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| |
Collapse
|
5
|
Abstract
The development of molecular nanostructures with well-defined particle size and shape is of eminent interest in biomedicine. Among many studied nanostructures, dendrimers represent the group of those most thoroughly characterized ones. Due to their unique structure and properties, dendrimers are very attractive for medical and pharmaceutical applications. Owing to the controllable cavities inside the dendrimer, guest molecules may be encapsulated, and highly reactive terminal groups are susceptible to further modifications, e.g., to facilitate target delivery. To understand the potential of these nanoparticles and to predict and avoid any adverse cellular reactions, it is necessary to know the mechanisms responsible for an efficient dendrimer uptake and the destination of their intracellular journey. In this article, we summarize the results of studies describing the dendrimer uptake, traffic, and efflux mechanisms depending on features of specific nanoparticles and cell types. We also present mechanisms of dendrimers responsible for toxicity and alteration in signal transduction pathways at the cellular level.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020; 12:pharmaceutics12080698. [PMID: 32722069 PMCID: PMC7464503 DOI: 10.3390/pharmaceutics12080698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
A new family of polyphenolic carbosilane dendrimers functionalized with ferulic, caffeic, and gallic acids has been obtained through a straightforward amidation reaction. Their antioxidant activity has been studied by different techniques such as DPPH (2,2′-diphenyl-1-picrylhydrazyl) radical scavenging assay, FRAP assay (ferric reducing antioxidant power), and cyclic voltammetry. The antioxidant analysis showed that polyphenolic dendrimers exhibited higher activities than free polyphenols in all cases. The first-generation dendrimer decorated with gallic acid stood out as the best antioxidant compound, displaying a correlation between the number of hydroxyl groups in the polyphenol structure and the antioxidant activity of the compounds. Moreover, the antibacterial capacity of these new systems has been screened against Gram-positive (+) and Gram-negative (−) bacteria, and we observed that polyphenolic dendrimers functionalized with caffeic and gallic acids were capable of decreasing bacterial growth. In contrast, ferulic carbosilane dendrimers and free polyphenols showed no effect, establishing a correlation between antioxidant activity and antibacterial capacity. Finally, a viability assay in human skin fibroblasts cells (HFF-1) allowed for corroborating the nontoxicity of the polyphenolic dendrimers at their active antibacterial concentration.
Collapse
|
7
|
Synthesis of imidazolium-terminated carbosilane dendrimers and dendrons and study of their interactions with a cell membrane model. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int J Pharm 2020; 579:119138. [PMID: 32061725 DOI: 10.1016/j.ijpharm.2020.119138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
Glycodendrimers are a novel group of dendrimers (DDMs) characterized by surface modifications with various types of glycosides. It has been shown previously that such modifications significantly decrease the cytotoxicity of DDMs. Here, we present an investigation of glucose-modified carbosilane DDMs (first-third-generation, DDM1-3Glu) interactions with two models of biological structures: lipid membranes (liposomes) and serum protein (human serum albumin, HSA). The changes in lipid membrane fluidity with increasing concentration of DDMs was monitored by spectrofluorimetry and calorimetry methods. The influence of glycodendrimers on serum protein was investigated by monitoring changes in protein fluorescence intensity (fluorescence quenching) and as protein secondary structure alterations by circular dichroism spectrometry. Generally, all generations of DDMGlu induced a decrease of membrane fluidity and interacted weakly with HSA. Interestingly, in contrast to other dendritic type polymers, the extent of the DDM interaction with both biological models was not related to DDM generation. The most significant interaction with protein was shown in the case of DDM2Glu, whereas DDM1Glu induced the highest number of changes in membrane fluidity. In conclusion, our results suggest that the flexibility of a DDM molecule, as well as its typical structure (hydrophobic interior and hydrophilic surface) along with the formation of larger aggregates of DDM2-3Glu, significantly affect the type and extent of interaction with biological structures.
Collapse
|
9
|
Ferrihydrite nanoparticles interaction with model lipid membranes. Chem Phys Lipids 2019; 226:104851. [PMID: 31836519 DOI: 10.1016/j.chemphyslip.2019.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 11/24/2022]
Abstract
In recent years was observed an increased interest towards the use of metal nanoparticles for various biomedical applications, such as therapeutics, delivery systems or imaging. As biological membranes are the first structures with which the nanoparticles interact, it is necessary to understand better the mechanisms governing these interactions. In the present paper we aim to characterize the effect of three different ferrihydrite nanoparticles (simple or doped with cooper or cobalt) on the fluidity of model lipid membranes. First we evaluated the physicochemical properties of the nanoparticles: size and composition. Secondly, their effect on lipid membranes was also evaluated using Laurdan, TMA-DPH and DPH fluorescence. Our results can help better understand the mechanisms involved in nanoparticles and membrane interactions.
Collapse
|
10
|
Roy B, Guha P, Nahak P, Karmakar G, Maiti S, Mandal AK, Bykov AG, Akentiev AV, Noskov BA, Tsuchiya K, Torigoe K, Panda AK. Biophysical Correlates on the Composition, Functionality, and Structure of Dendrimer-Liposome Aggregates. ACS OMEGA 2018; 3:12235-12245. [PMID: 31459298 PMCID: PMC6645486 DOI: 10.1021/acsomega.8b01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Interaction between negatively charged liposomes and cationic polyamidoamine dendrimers of different generations was investigated through size, zeta potential, turbidity, electron microscopy, atomic force microscopy, fluorescence spectroscopy, and calorimetric studies. Liposomes with the binary combination of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) + dihexadecyl phosphate, DPPC + 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, DPPC + 1,2-dipalmitoyl-sn-glycero-3-phosphate, and DPPC + 1,2-dipalmitoyl-sn-glycero-3-phosphoethanol were stable up to 60 days. The electrostatic nature of dendrimer-lipid bilayer interaction was evidenced through charge neutralization and subsequent reversal upon added dendrimer to liposome. Dendrimer-liposome interaction depended on its generation (5 > 4 > 3) in addition to the charge, head groups, and hydrocarbon chain length of lipids. Fluorescence anisotropy and differential scanning calorimetry studies suggest the fluidization of the bilayer, although the surface rigidity was enhanced by the added dendrimers. Thermodynamic parameters of the interaction processes were evaluated by isothermal titration and differential scanning calorimetric studies. The binding processes were exothermic in nature. The enthalpy of transition of the chain melting of lipids decreased systematically with increasing dendrimer concentration and generation. Dendrimer-liposome aggregates were nontoxic to healthy human blood cell, suggesting the potential of such aggregates as drug delivery systems.
Collapse
Affiliation(s)
- Biplab Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Pritam Guha
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Prasant Nahak
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Souvik Maiti
- Proteomics
and Structural Biology Unit, CSIR-Institute
of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Amit Kumar Mandal
- Chemical
Biology Laboratory, Department of Sericulture, Raiganj University, Uttar Dinajpur 733134, West Bengal, India
| | - Alexey G. Bykov
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V. Akentiev
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A. Noskov
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Koji Tsuchiya
- Department
of Pure and Applied Chemistry, Tokyo University
of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Kanjiro Torigoe
- Department
of Pure and Applied Chemistry, Tokyo University
of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Amiya Kumar Panda
- Department
of Chemistry and Chemical Technology, Vidyasagar
University, Midnapore 721102, West Bengal, India
| |
Collapse
|
11
|
Wrobel D, Kubikova R, Müllerová M, Strašák T, RůŽička K, Fulem M, Maly J. Phosphonium carbosilane dendrimers - interaction with a simple biological membrane model. Phys Chem Chem Phys 2018; 20:14753-14764. [PMID: 29775190 DOI: 10.1039/c7cp07237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of three generations of five different phosphonium carbosilane dendrimers and one ammonium carbosilane dendrimer as a reference (PMe3, PBu3, P(Et2)2(CH2)3OH, PPh3, P(MeOPh)3 and NMe3, peripheral functional groups) on dimyristoylphosphatidylcholine (DMPC) or a lipid mixture dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) of liposomes was studied by fluorescence polarization measurements and differential scanning calorimetry. All types of dendrimers interacted with neutral as well as negatively charged liposomes, but the strength and observed influence were different. Concentration, type of peripheral functional group modification and dendrimer generation were the main factors influencing the interaction. Generally, weak interactions as well as destabilization of the lipid membranes at low concentrations, regardless of liposome type, were observed in the case of DmPMe3, DmNMe3, DmPBu3 and DmP(Et2)2(CH2)3OH. Dendrimers with PPh3 and P(MeOPh)3 peripheral functional groups interacted much more strongly and increased the rigidity of liposomes. Electrostatic interactions, the hydrophobicity of substituents and charge shielding on the peripheral phosphonium group are important factors in the interaction. We suggest that, among the other types of dendrimers, the dendrimer with the P(MeOPh)3 peripheral functional group is a highly promising candidate for the design of a drug delivery system due to its positive charge, efficient interaction with lipidic membranes and low cytotoxicity.
Collapse
Affiliation(s)
- Dominika Wrobel
- Department of Biology, Jan Evangelista Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
12
|
Peña-González CE, Pedziwiatr-Werbicka E, Martín-Pérez T, Szewczyk EM, Copa-Patiño JL, Soliveri J, Pérez-Serrano J, Gómez R, Bryszewska M, Sánchez-Nieves J, de la Mata FJ. Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. Int J Pharm 2017; 528:55-61. [PMID: 28577968 DOI: 10.1016/j.ijpharm.2017.05.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Water soluble silver nanoparticles (AgNPs) capped with cationic carbosilane dendrons have been synthesized by direct reaction in water of dendrons, silver precursor and a reducing agent. These nanoparticles have been characterized by nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), elemental analysis, and zeta potential (ZP). The antibacterial and antifungal properties of the cationic dendrons and dendronized AgNPs and AuNPs with these dendrons have been evaluated against Gram-negative and Gram-positive bacterial -including resistant strains- and yeast strains, respectively. The results stand out for the activity of AgNPs covered with first generation dendron compared with this free dendron and corresponding dendronized AuNPs.
Collapse
Affiliation(s)
- Cornelia E Peña-González
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología. Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, 137 Pomorska Street, 90-235 Lodz, Poland
| | - José L Copa-Patiño
- Departamento de Biomedicina y Biotecnología. Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Juan Soliveri
- Departamento de Biomedicina y Biotecnología. Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología. Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Javier Sánchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
13
|
Dabrzalska M, Janaszewska A, Zablocka M, Mignani S, Majoral JP, Klajnert-Maculewicz B. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. Mol Pharm 2017; 14:1821-1830. [PMID: 28350966 DOI: 10.1021/acs.molpharmaceut.7b00108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.
Collapse
Affiliation(s)
- Monika Dabrzalska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , Pomorska 141/143, 90-236 Lodz, Poland
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Sienkiewicza 112, 90-363 Lodz, Poland
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860 , 45 rue des Saints Pères, 75006 Paris, France
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse, France.,Université de Toulouse, UPS, INPT , 31077 Toulouse Cedex 4, France
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , Pomorska 141/143, 90-236 Lodz, Poland.,Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
14
|
Falanga A, Lombardi L, Tarallo R, Franci G, Perillo E, Palomba L, Galdiero M, Pontoni D, Fragneto G, Weck M, Galdiero S. The intriguing journey of gH625-dendrimers. RSC Adv 2017. [DOI: 10.1039/c6ra28405a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The knowledge of the mechanism used by vectors to gain access to cell interiors is key to the development of effective drug delivery tools for different pathologies.
Collapse
|
15
|
Melikishvili S, Poturnayova A, Ionov M, Bryszewska M, Vary T, Cirak J, Muñoz-Fernández MÁ, Gomez-Ramirez R, de la Mata FJ, Hianik T. The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3005-3016. [DOI: 10.1016/j.bbamem.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
|
16
|
Lombardo D, Calandra P, Bellocco E, Laganà G, Barreca D, Magazù S, Wanderlingh U, Kiselev MA. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2769-2777. [PMID: 27521487 DOI: 10.1016/j.bbamem.2016.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 12/25/2022]
Abstract
In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Viale F. S. D'Alcontres 37, 98158 Messina, Italy.
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km 29.300, Monterotondo Stazione, 00015 Roma, Italy
| | - Ersilia Bellocco
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy; LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans & Tours; and CBM (CNRS), rue Charles Sandron, 45071 Orléans, France
| | - Ulderico Wanderlingh
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Ulica Joliot-Curie 6, Dubna, Moscow 141980, Russia
| |
Collapse
|
17
|
Ionov M, Ihnatsyeu-Kachan A, Michlewska S, Shcharbina N, Shcharbin D, Majoral JP, Bryszewska M. Effect of dendrimers on selected enzymes—Evaluation of nano carriers. Int J Pharm 2016; 499:247-254. [DOI: 10.1016/j.ijpharm.2015.12.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
|
18
|
Interactions of dendritic glycopolymer with erythrocytes, red blood cell ghosts and membrane enzymes. Int J Pharm 2015; 496:475-88. [DOI: 10.1016/j.ijpharm.2015.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
|
19
|
Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes. Anal Bioanal Chem 2015; 408:2743-58. [PMID: 26603178 DOI: 10.1007/s00216-015-9157-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
With the boom of nanotechnology, nanomaterials (NMs) have been widely utilized in diverse applications, especially in biological and biomedical fields. Understanding how NMs interact with biomolecules, including proteins, DNA, and lipids, is of great importance for revealing the limitations posed and opportunities offered. Model lipid membrane, as a simplified cell membrane model, has been widely used to study the nanomaterial-lipid membrane interactions. In this article, current and emerging techniques, both experimental and theoretical, to investigate the interactions between NMs and model lipid membrane are summarized with each tool's capacities and limitations, along with future directions and challenges in this exciting area. This critical information will provide methodological guidance for researchers in this field.
Collapse
|
20
|
Santhosh PB, Drašler B, Drobne D, Kreft ME, Kralj S, Makovec D, Ulrih NP. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Int J Nanomedicine 2015; 10:6089-103. [PMID: 26491286 PMCID: PMC4598216 DOI: 10.2147/ijn.s89679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Barbara Drašler
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
21
|
Wrobel D, Appelhans D, Signorelli M, Wiesner B, Fessas D, Scheler U, Voit B, Maly J. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1490-501. [PMID: 25843678 DOI: 10.1016/j.bbamem.2015.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/31/2023]
Abstract
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.
Collapse
Affiliation(s)
- Dominika Wrobel
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Marco Signorelli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Brigitte Wiesner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Dimitrios Fessas
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Jan Maly
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic
| |
Collapse
|
22
|
Okuno M, Mezger M, Stangenberg R, Baumgarten M, Müllen K, Bonn M, Backus EHG. Interaction of a patterned amphiphilic polyphenylene dendrimer with a lipid monolayer: electrostatic interactions dominate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1980-1987. [PMID: 25602738 DOI: 10.1021/la504252s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimeric macromolecules with defined shape and size are promising candidates for delivering drug or DNA molecules into cells. In this work we study the influence of an amphiphilic polyphenylene dendrimer on a model cell membrane consisting of a condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. A small surface pressure decrease is observed when the dendrimer solution is injected into the aqueous phase below the monolayer. X-ray reflectivity measurements show that the surface monolayer remains intact. The molecular-scale picture is obtained with sum-frequency generation spectroscopy. With this technique, we observe that the tails of the surfactant molecules become less ordered upon interaction with the amphiphilic polyphenylene dendrimer. In contrast, the water molecules below the DPPC layer become more ordered. Our observations suggest that electrostatic interactions between the negative charge of the dendrimer and the positively charged part of the DPPC headgroup keep the dendrimer located below the headgroup. No evidence of dendrimer insertion into the membrane has been observed. Apparently before entering the cell membrane the dendrimer can stick at the hydrophilic part of the lipids.
Collapse
Affiliation(s)
- Masanari Okuno
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Ionov M, Ciepluch K, Garaiova Z, Melikishvili S, Michlewska S, Balcerzak Ł, Glińska S, Miłowska K, Gomez-Ramirez R, de la Mata FJ, Shcharbin D, Waczulikova I, Bryszewska M, Hianik T. Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:907-15. [PMID: 25576765 DOI: 10.1016/j.bbamem.2014.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/27/2022]
Abstract
AIMS We have investigated the effect of surface charge of model lipid membranes on their interactions with dendriplexes formed by HIV-derived peptides and 2 types of positively charged carbosilane dendrimers (CBD). METHODS Interaction of dendriplexes with lipid membranes was measured by fluorescence anisotropy, dynamic light scattering and Langmuir-Blodgett techniques. The morphology of the complexes was examined by transmission electron microscopy. RESULTS All dendriplexes independent of the type of peptide interacted with model lipid membranes. Negatively charged vesicles composed of a mixture of DMPC/DPPG interacted more strongly, and it was accompanied by an increase in anisotropy of the fluorescent probe localized in polar domain of lipid bilayers. There was also an increase in surface pressure of the lipid monolayers. Mixing negatively charged liposomes with dendriplexes increased liposome size and made their surface charges more positive. CONCLUSIONS HIV-peptide/dendrimer complexes interact with model lipid membranes depending on their surface charge. Carbosilane dendrimers can be useful as non-viral carriers for delivering HIV-peptides into cells.
Collapse
Affiliation(s)
- Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Karol Ciepluch
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Zuzana Garaiova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - Sophie Melikishvili
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - Sylwia Michlewska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódż, Poland
| | - Łucja Balcerzak
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódż, Poland
| | - Sława Glińska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódż, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Rafael Gomez-Ramirez
- Departamento Química Inorgánica, Universidad de Alcalá de Henares, CIBER-BBN Alcalá de Henares, Spain
| | | | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| |
Collapse
|
24
|
He XC, Lin M, Li F, Sha BY, Xu F, Qu ZG, Wang L. Advances in studies of nanoparticle–biomembrane interactions. Nanomedicine (Lond) 2015; 10:121-41. [DOI: 10.2217/nnm.14.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field. This article reviews the state-of-the-art techniques in studies of NP–biomembrane interactions with a focus on each technology's advantages and disadvantages. The aim is to better understand the mechanism of NP–biomembrane interactions and provide significant guidance for various fields, such as nanomedicine and diagnosis.
Collapse
Affiliation(s)
- Xiao Cong He
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Fei Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Department of Chemistry, School of Sciences, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Bao Yong Sha
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Zhi Guo Qu
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
25
|
Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S. Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS One 2014; 9:e112128. [PMID: 25423477 PMCID: PMC4244103 DOI: 10.1371/journal.pone.0112128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/12/2014] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
| | - Rossella Tarallo
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Thomas Carberry
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | | | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Stefania Galdiero
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
26
|
Bhattacharya R, Kanchi S, C R, Lakshminarayanan A, Seeck OH, Maiti PK, Ayappa KG, Jayaraman N, Basu JK. A new microscopic insight into membrane penetration and reorganization by PETIM dendrimers. SOFT MATTER 2014; 10:7577-7587. [PMID: 25115726 DOI: 10.1039/c4sm01112k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.
Collapse
Affiliation(s)
- R Bhattacharya
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Santhosh PB, Velikonja A, Perutkova Š, Gongadze E, Kulkarni M, Genova J, Eleršič K, Iglič A, Kralj-Iglič V, Ulrih NP. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chem Phys Lipids 2013; 178:52-62. [PMID: 24309194 DOI: 10.1016/j.chemphyslip.2013.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022]
Abstract
The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Aljaž Velikonja
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaska 25, SI-1000 Ljubljana, Slovenia; SMARTEH Research and Development of Electronic Controlling and Regulating Systems, Trg Tigrovcev 1, SI-5220 Tolmin, Slovenia
| | - Šarka Perutkova
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaska 25, SI-1000 Ljubljana, Slovenia; Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia
| | - Ekaterina Gongadze
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaska 25, SI-1000 Ljubljana, Slovenia
| | - Mukta Kulkarni
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaska 25, SI-1000 Ljubljana, Slovenia
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | | | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaska 25, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions. Int J Mol Sci 2013; 14:15312-29. [PMID: 23887653 PMCID: PMC3759861 DOI: 10.3390/ijms140815312] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/05/2023] Open
Abstract
In this work, a theoretical model describing the interaction between a positively or negatively charged nanoparticle and neutral zwitterionic lipid bilayers is presented. It is shown that in the close vicinity of the positively charged nanoparticle, the zwitterionic lipid headgroups are less extended in the direction perpendicular to the membrane surface, while in the vicinity of the negatively charged nanoparticle, the headgroups are more extended. This result coincides with the calculated increase in the osmotic pressure between the zwitterionic lipid surface and positively charged nanoparticle and the decrease of osmotic pressure between the zwitterionic lipid surface and the negatively charged nanoparticle. Our theoretical predictions agree well with the experimentally determined fluidity of a lipid bilayer membrane in contact with positively or negatively charged nanoparticles. The prospective significance of the present work is mainly to contribute to better understanding of the interactions of charged nanoparticles with a zwitterionic lipid bilayer, which may be important in the efficient design of the lipid/nanoparticle nanostructures (like liposomes with encapsulated nanoparticles), which have diverse biomedical applications, including targeted therapy (drug delivery) and imaging of cancer cells.
Collapse
|