1
|
Alwusaydi HA, Yarzebinski JS, Mandal P, Mann JA, Mann EK. Line tension and line entropy associated with the monolayer/trilayer boundary of smectic liquid crystal at the air-water interface. Phys Rev E 2024; 110:014802. [PMID: 39160968 DOI: 10.1103/physreve.110.014802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
Molecularly thin films of the smectic liquid crystal 4'-octyl-4-biphenylcarbonitrile (8CB) at the air-water interface phase separate into regions with different numbers of layers, in analogy with freestanding smectic liquid crystalline films. This paper reports the line tension associated with the boundary of coexisting trilayer and monolayer phases of in Langmuir films of 8CB at the air-water interface as a function of temperature and humidity and infers information on the boundary profile between the coexisting phases. Two complementary techniques are used to characterize the 8CB thin films: surface pressure-area isotherm and Brewster angle microscopy (BAM). We determine the line tension by stretching isolated domains from their equilibrium circular shape and analyzing the free relaxation with a hydrodynamic model. Then, we interpret the line tension vs temperature data in terms of an excess line entropy for the domain boundary, which requires careful consideration of the thermodynamics of inhomogeneous monolayer systems.
Collapse
|
2
|
Pusterla JM, Cannas SA, Schneck E, Oliveira RG. Purified myelin lipids display a critical mixing point at low surface pressure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183874. [PMID: 35120896 DOI: 10.1016/j.bbamem.2022.183874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Lipids extracted from Purified Myelin Membranes (LPMM) were spread as monomolecular films at the air/aqueous interface. The films were visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) and ionic environments. Coexistence of Liquid-Expanded (LE) and cholesterol-enriched (CE) rounded domains persisted up to π ≈ 5 mN/m but the monolayers became homogeneous at higher surface pressures. Before mixing, the domains distorted to non-rounded domains. We experimentally measured the line tension (λ) for the lipid monolayers at the domain borders by a shape relaxation technique using non-homogeneous electric fields. Regardless of the subphase conditions, the obtained line tensions are of the order of pN and tended to decrease as lateral pressure increased toward the mixing point. From the mean square displacement of nested trapped domains, we also calculated the dipole density difference between phases (μ). A non-linear drop was detected in this parameter as the mixing point is approached. Here we quantitively evaluated the π-dependance of both parameters with proper power laws in the vicinity of the critical mixing surface pressure, and the exponents showed to be consistent with a critical phenomenon in the two-dimensional Ising universality class. This idea of bidimensionality was found to be compatible only for simplified lipidic systems, while for whole myelin monolayers, that means including proteins, no critical mixing point was detected. Finally, the line tension values were related with the thickness differences between phases (Δt) near the critical point.
Collapse
Affiliation(s)
- Julio M Pusterla
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Sergio A Cannas
- Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | - Emanuel Schneck
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Rafael G Oliveira
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
3
|
Ionic environment, thickness and line tension as determinants of phase separation in whole Purified Myelin Membranes monolayers. Colloids Surf B Biointerfaces 2021; 207:112027. [PMID: 34388613 DOI: 10.1016/j.colsurfb.2021.112027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Purified myelin membranes (PMM) were spread as monomolecular films at the air/aqueous solution interface, and visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) on three specific aqueous solutions: absence of salts, physiological conditions and presence of calcium. Coexistence of Liquid-Expanded (LE) and Liquid Ordered (LO) phases persisted up to collapse in the presence of salts, whereas monolayers became homogeneous at π ≥ 35-40 mN/m when salts are absent. This PMM phase-mixing behavior in monolayers is similar to the previously reported behavior of PMM multilamellar vesicles. Reflectivities (Rp) of p-polarized light from both phases were assessed throughout the whole π -range, and film thicknesses (t) were calculated from the Rp values and measured film refractive indices (n). The LO phase was found to be more reflective and thicker than the LE phase at π ≤ 15 mN/m, but less reflective and thinner at higher π. We also determined the line tension (λ) of PMM monolayers at the domain boundaries from the rate of domain shape relaxation, which turned out to be of the order of picoNewtons (pN) and decreased as π increased. A correlation between λ and thickness differences (Δt) was found, suggesting that Δt is a molecular determinant for λ in PMM monolayers. Both λ and Δt were found to increase markedly when calcium was present in the subphase. This result corroborates the concept of divalent cations as a stabilizing factor for phase separation, in line with earlier studies on this mixture forming multilamellar membrane arrangements.
Collapse
|
4
|
Rufeil Fiori E, Downing R, Bossa GV, May S. Influence of spontaneous curvature on the line tension of phase-coexisting domains in a lipid monolayer: A Landau-Ginzburg model. J Chem Phys 2020; 152:054707. [DOI: 10.1063/1.5138192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elena Rufeil Fiori
- Facultad de Matemática, Astronomía, Física y Computación and Instituto de Física Enrique Gaviola (IFEG), CONICET, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Rachel Downing
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Guilherme Volpe Bossa
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
5
|
Staneva G, Puff N, Stanimirov S, Tochev T, Angelova MI, Seigneuret M. The Alzheimer's disease amyloid-β peptide affects the size-dynamics of raft-mimicking Lo domains in GM1-containing lipid bilayers. SOFT MATTER 2018; 14:9609-9618. [PMID: 30457145 DOI: 10.1039/c8sm01636d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by the overproduction of the amyloid-β peptide (Aβ) which forms fibrils under the influence of raft microdomains containing the ganglioside GM1. Raft-mimicking artificial liquid ordered (Lo) domains containing GM1 enhance amyloid-β polymerization. Other experiments suggest that Aβ binds preferably to the non-raft liquid disordered (Ld) phase rather than to the Lo phase in the presence of GM1. Here, the interaction of Aβ(1-42) with GM1-containing biphasic Lo-Ld giant vesicles was investigated. Fluorescence colocalisation experiments confirm that Aβ(1-42) binds preferentially to the Ld phase. The effect of Aβ(1-42) on the Lo-Ld size dynamics was studied using photoinduced spinodal decomposition which mimics the nanodomain-microdomain raft coalescence. Aβ affects the kinetics of the coarsening phase and the size of the resulting microdomains. The effect depends on which phase is in a majority: when the Lo microdomains are formed inside an Ld phase, their growth rate becomes slower and their final size smaller in the presence of Aβ(1-42), whereas when the Ld microdomains are formed inside an Lo phase, the growth rate becomes faster and the final size larger. Fluorimetric measurements on large vesicles using the probe Laurdan indicate that Aβ(1-42) binding respectively increases or decreases the packing of the Ld phase in the presence or absence of GM1. The differential effects of Aβ on spinodal decomposition are accordingly interpreted as resulting from distinct effects of the peptide on the Lo-Ld line tension modulated by GM1. Such modulating effect of Aβ on domain dynamics could be important for lipid rafts in signaling disorders in AD as well as in Aβ fibrillation.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
6
|
Fanani ML, Wilke N. Regulation of phase boundaries and phase-segregated patterns in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1972-1984. [PMID: 29505769 DOI: 10.1016/j.bbamem.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
Demixing of components has long been described in model membranes. It is a consequence of non-ideal lateral interactions between membrane components, and it causes the presence of segregated phases, forming patches (domains) of different properties, thus introducing heterogeneity into the membrane. In the present review we first describe the processes through which domains are generated, how they grow, and why they are rounded, striped or fractal-like, as well as why they get distributed forming defined patterns. Next, we focus on the effect of an additive on a lipid mixture, which usually induces shifts in demixing points, thus stabilizing or destabilizing the phase-segregated state. Results found for different model membranes are summarized, detailing the ways in which phase segregation and the generated patterns may be modulated. We focus on which are, from our viewpoint, the most relevant regulating factors affecting the surface texture observed in model membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- María Laura Fanani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
7
|
Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:789-802. [DOI: 10.1016/j.bbamem.2017.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
|
8
|
Pusterla JM, Malfatti-Gasperini AA, Puentes-Martinez XE, Cavalcanti LP, Oliveira RG. Refractive index and thickness determination in Langmuir monolayers of myelin lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:924-930. [DOI: 10.1016/j.bbamem.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 12/13/2022]
|
9
|
Rosetti CM, Montich GG, Pastorino C. Molecular Insight into the Line Tension of Bilayer Membranes Containing Hybrid Polyunsaturated Lipids. J Phys Chem B 2017; 121:1587-1600. [PMID: 28139120 DOI: 10.1021/acs.jpcb.6b10836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Line tension (γ) is a key parameter for the structure and dynamics of membrane domains. It was proposed that hybrid lipids, with mixed saturated and unsaturated acyl chains, participate in the relaxation of γ through different mechanisms. In this work, we used molecular dynamics simulations of the coarse-grained MARTINI model to measure γ in liquid-ordered-liquid-disordered (Lo-Ld) membranes, with increasingly larger relative proportion of the hybrid polyunsaturated lipid PAPC (4:0-5:4PC) to DAPC (di5:4PC) (i.e., XH). We also calculated an elastic contribution to γ by the Lo-Ld thickness mismatch, tilt moduli, and bending moduli, as predicted by theory. We found that an increase in XH decreased the overall γ value and the elastic contribution to line tension. The effect on the elastic line tension is driven by a reduced hydrophobic mismatch. Changes in the elastic constants of the phases due to an increase in XH produced a slightly larger elastic γ term. In addition to this elastic energy, other major contributions to γ are found in these model membranes. Increasing XH decreases both elastic and nonelastic contributions to γ. Finally, PAPC also behaves as a linactant, relaxing γ through an interfacial effect, as predicted by theoretical results. This study gives insight into the actual contribution of distinct energy terms to γ in bilayers containing polyunsaturated hybrid lipids.
Collapse
Affiliation(s)
- Carla M Rosetti
- Centro de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - Guillermo G Montich
- Centro de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - Claudio Pastorino
- Departamento de Física, Centro Atómico Constituyentes CNEA , Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina.,CONICET , Avda. Rivadavia 1917, C1033AAJ Cdad. de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Bischof AA, Mangiarotti A, Wilke N. Searching for line active molecules on biphasic lipid monolayers. SOFT MATTER 2015; 11:2147-2156. [PMID: 25633226 DOI: 10.1039/c5sm00022j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In membranes with phase coexistence, line tension appears as an important parameter for the determination of the amount of domains, as well as their size and their shape, thus defining the membrane texture. Different molecules have been proposed as "linactants" (i.e. molecules that reduce the line tension, thereby modulating the membrane texture). In this work, we explore the efficiency of different molecules as linactants in monolayers with two coexisting phases of different thicknesses. We tested the linactant ability of a molecule with chains of different saturation degrees, another molecule with different chain lengths and a bulky molecule. In this way, we show in the same system the effect of molecules with chains of different rigidities, with an intrinsic thickness mismatch and with a bulky moiety, thereby analyzing different hypotheses of how a molecule may change the line tension in a monolayer system. Both lipids with different hydrocarbon chains did not act as linactants, while only one of the bulky molecules tested decreased the line tension in the monolayer studied. We conclude that there are no universal rules for the structure of a molecule that enable us to predict that it will behave as a linactant and thus, designing linactants appears to be a difficult task and a challenge for future studies. Furthermore, in regard to the membrane texture, there was no direct influence of the line tension in the distribution of domain sizes.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | | | | |
Collapse
|
11
|
Guzmán E, Orsi D, Cristofolini L, Liggieri L, Ravera F. Two-dimensional DPPC based emulsion-like structures stabilized by silica nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11504-11512. [PMID: 25210864 DOI: 10.1021/la502183t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the mechanical and structural properties of mixed surface layers composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and silica nanoparticles (NPs). These layers are obtained by spreading a DPPC Langmuir monolayer on a colloidal silica dispersion. The transfer/incorporation of NPs into the DPPC monolayer, driven by electrostatic interactions, alters the molecular orientation, the mechanisms of domain formation, and consequently the phase behavior of the surface layer during compression. The investigation of these systems by means of complementary techniques (Langmuir trough, fluorescence microscopy, ellipsometry, and scanning electron microscopy (SEM)) shows that the incorporated NPs preferentially distribute along the liquid expanded phase of DPPC. The layer assumes the stable and homogeneous bidimensional structure of a two-dimensional (2D) analogue of a Pickering emulsion. In fact, the presence of particles provides a circular shape to the DPPC domains and stabilizes them against growth and coalescence during the monolayer compression.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Consiglio Nazionale delle Ricerche-Istituto per l'Energetica e le Interfasi, U.O.S. Genova (CNR-IENI) , Via De Marini 6, 16149 Genova, Italy
| | | | | | | | | |
Collapse
|
12
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Abstract
Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions.
Collapse
Affiliation(s)
- Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom;
| | | |
Collapse
|