1
|
Fan X, Song Y, Liu Y, Song J, Zeng J, Li Z, Xu J, Xue C. Effects of mitochondrial lipidome alterations on quality deterioration of Larimichthys crocea postmortem storage: New insight from the perspective of mediating mitochondria-dependent apoptosis. Food Chem 2025; 468:142461. [PMID: 39693887 DOI: 10.1016/j.foodchem.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Apoptosis occurs in the myocyte of fish postmortem storage. Based on the important role of mitochondrial lipid molecules in regulating apoptosis, the study aims to investigate the potential impact of mitochondrial lipids on apoptosis and quality deterioration of large yellow croaker. A total of 1079 lipid molecule species in 13 classes were identified in mitochondria. PC and PE decreased by 17.40 % and 28.31 % at 24 h, which induces mitochondrial damage and induces oxidative stress. Cytochrome c induced CL oxidation mediated by ROS (Oxidized CL increased by 30.65 %), resulting in cytochrome c release and activates caspase-3. The cytochrome c of cytoplasm and caspase-3 activity increased by 79.32 % and 82.72 % from 0 to 24 h, which led to significant apoptosis. Accumulation of ROS and activated caspase-3 during apoptosis induced muscle oxidation and softening. These findings provide new insights into the relationship between mitochondrial lipid changes and apoptosis and quality deterioration in fish postmortem storage.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Junyi Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
2
|
Ren M, Xu Y, Phoon CKL, Erdjument-Bromage H, Neubert TA, Schlame M. Cardiolipin prolongs the lifetimes of respiratory proteins in Drosophila flight muscle. J Biol Chem 2023; 299:105241. [PMID: 37690688 PMCID: PMC10622840 DOI: 10.1016/j.jbc.2023.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Respiratory complexes and cardiolipins have exceptionally long lifetimes. The fact that they co-localize in mitochondrial cristae raises the question of whether their longevities have a common cause and whether the longevity of OXPHOS proteins is dependent on cardiolipin. To address these questions, we developed a method to measure side-by-side the half-lives of proteins and lipids in wild-type Drosophila and cardiolipin-deficient mutants. We fed adult flies with stable isotope-labeled precursors (13C615N2-lysine or 13C6-glucose) and determined the relative abundance of heavy isotopomers in protein and lipid species by mass spectrometry. To minimize the confounding effects of tissue regeneration, we restricted our analysis to the thorax, the bulk of which consists of post-mitotic flight muscles. Analysis of 680 protein and 45 lipid species showed that the subunits of respiratory complexes I-V and the carriers for phosphate and ADP/ATP were among the longest-lived proteins (average half-life of 48 ± 16 days) while the molecular species of cardiolipin were the longest-lived lipids (average half-life of 27 ± 6 days). The remarkable longevity of these crista residents was not shared by all mitochondrial proteins, especially not by those residing in the matrix and the inner boundary membrane. Ablation of cardiolipin synthase, which causes replacement of cardiolipin by phosphatidylglycerol, and ablation of tafazzin, which causes partial replacement of cardiolipin by monolyso-cardiolipin, decreased the lifetimes of the respiratory complexes. Ablation of tafazzin also decreased the lifetimes of the remaining cardiolipin species. These data suggest that an important function of cardiolipin in mitochondria is to protect respiratory complexes from degradation.
Collapse
Affiliation(s)
- Mindong Ren
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA; Departments of Cell Biology, Physiology, New York University Grossman School of Medicine, New York, New York, USA.
| | - Yang Xu
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K L Phoon
- Departments of Pediatrics, Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hediye Erdjument-Bromage
- Departments of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Thomas A Neubert
- Departments of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA; Departments of Cell Biology, Physiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Nakata K, Hatakeyama Y, Erra-Balsells R, Nonami H, Wada H. Dynamics and stabilization mechanism of mitochondrial cristae morphofunction associated with turgor-driven cardiolipin biosynthesis under salt stress conditions. Sci Rep 2022; 12:9727. [PMID: 35778427 PMCID: PMC9249792 DOI: 10.1038/s41598-022-14164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Maintaining energy production efficiency is of vital importance to plants growing under changing environments. Cardiolipin localized in the inner mitochondrial membrane plays various important roles in mitochondrial function and its activity, although the regulation of mitochondrial morphology to various stress conditions remains obscure, particularly in the context of changes in cellular water relations and metabolisms. By combining single-cell metabolomics with transmission electron microscopy, we have investigated the adaptation mechanism in tomato trichome stalk cells at moderate salt stress to determine the kinetics of cellular parameters and metabolisms. We have found that turgor loss occurred just after the stress conditions, followed by the contrasting volumetric changes in mitochondria and cells, the accumulation of TCA cycle-related metabolites at osmotic adjustment, and a temporal increase in cardiolipin concentration, resulting in a reversible topological modification in the tubulo-vesicular cristae. Because all of these cellular events were dynamically observed in the same single-cells without causing any disturbance for redox states and cytoplasmic streaming, we conclude that turgor pressure might play a regulatory role in the mitochondrial morphological switch throughout the temporal activation of cardiolipin biosynthesis, which sustains mitochondrial respiration and energy conversion even under the salt stress conditions.
Collapse
Affiliation(s)
- Keisuke Nakata
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan
| | - Yuto Hatakeyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry and CIHIDECAR-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Wada
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan.
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
4
|
Mitochondrial Lipids: From Membrane Organization to Apoptotic Facilitation. Int J Mol Sci 2022; 23:ijms23073738. [PMID: 35409107 PMCID: PMC8998749 DOI: 10.3390/ijms23073738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are the most complex intracellular organelles, their function combining energy production for survival and apoptosis facilitation for death. Such a multivariate physiology is structurally and functionally reflected upon their membrane configuration and lipid composition. Mitochondrial double membrane lipids, with cardiolipin as the protagonist, show an impressive level of complexity that is mandatory for maintenance of mitochondrial health and protection from apoptosis. Given that lipidomics is an emerging field in cancer research and that mitochondria are the organelles with the most important role in malignant maintenance knowledge of the mitochondrial membrane, lipid physiology in health is mandatory. In this review, we will thus describe the delicate nature of the healthy mitochondrial double membrane and its role in apoptosis. Emphasis will be given on mitochondrial membrane lipids and the changes that they undergo during apoptosis induction and progression.
Collapse
|
5
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Kotapati HK, Bates PD. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122099. [DOI: 10.1016/j.jchromb.2020.122099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
|
7
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
8
|
Schlame M, Xu Y, Erdjument-Bromage H, Neubert TA, Ren M. Lipidome-wide 13C flux analysis: a novel tool to estimate the turnover of lipids in organisms and cultures. J Lipid Res 2020; 61:95-104. [PMID: 31712250 PMCID: PMC6939592 DOI: 10.1194/jlr.d119000318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/07/2019] [Indexed: 01/12/2023] Open
Abstract
Lipid metabolism plays an important role in the regulation of cellular homeostasis. However, because it is difficult to measure the actual rates of synthesis and degradation of individual lipid species, lipid compositions are often used as a surrogate to evaluate lipid metabolism even though they provide only static snapshots of the lipodome. Here, we designed a simple method to determine the turnover rate of phospholipid and acylglycerol species based on the incorporation of 13C6-glucose combined with LC-MS/MS. We labeled adult Drosophila melanogaster with 13C6-glucose that incorporates into the entire lipidome, derived kinetic parameters from mass spectra, and studied effects of deletion of CG6718, the fly homolog of the calcium-independent phospholipase A2β, on lipid metabolism. Although 13C6-glucose gave rise to a complex pattern of 13C incorporation, we were able to identify discrete isotopomers in which 13C atoms were confined to the glycerol group. With these isotopomers, we calculated turnover rate constants, half-life times, and fluxes of the glycerol backbone of multiple lipid species. To perform these calculations, we estimated the fraction of labeled molecules in glycerol-3-phosphate, the lipid precursor, by mass isotopomer distribution analysis of the spectra of phosphatidylglycerol. When we applied this method to D. melanogaster, we found a range of lipid half-lives from 2 to 200 days, demonstrated tissue-specific fluxes of individual lipid species, and identified a novel function of CG6718 in triacylglycerol metabolism. This method provides fluxomics-type data with significant potential to improve the understanding of complex lipid regulation in a variety of research models.
Collapse
Affiliation(s)
- Michael Schlame
- Departments of Anesthesiology, New York University School of Medicine, New York, NY 10016; Cell Biology, New York University School of Medicine, New York, NY 10016.
| | - Yang Xu
- Departments of Anesthesiology, New York University School of Medicine, New York, NY 10016
| | - Hediye Erdjument-Bromage
- Cell Biology, New York University School of Medicine, New York, NY 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Thomas A Neubert
- Cell Biology, New York University School of Medicine, New York, NY 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Mindong Ren
- Departments of Anesthesiology, New York University School of Medicine, New York, NY 10016; Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
9
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
New C-Terminal Conserved Regions of Tafazzin, a Catalyst of Cardiolipin Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2901057. [PMID: 31781330 PMCID: PMC6855050 DOI: 10.1155/2019/2901057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Cardiolipin interacts with many proteins of the mitochondrial inner membrane and, together with cytochrome C and creatine kinase, activates them. It can be considered as an integrating factor for components of the mitochondrial respiratory chain, which provides for an efficient transfer of electrons and protons. The major, if not the only, factor of cardiolipin maturation is tafazzin. Variations of isoform proportions of this enzyme can cause severe diseases such as Barth syndrome. Using bioinformatic methods, we have found conserved C-terminal regions in many tafazzin isoforms and identified new mammalian species that acquired exon 5 as well as rare occasions of intron retention between exons 8 and 9. The regions in the C-terminal part arise from frameshifts relative to the full-length TAZ transcript after skipping exon 9 or retention of the intron between exons 10 and 11. These modifications demonstrate specific distribution among the orders of mammals. The dependence of the species maximum lifespan, body weight, and mitochondrial metabolic rate on the modifications has been demonstrated. Arguably, unconventional tafazzin isoforms provide for the optimal balance between the increased biochemical activity of mitochondria (resulting from specific environmental or nutritional conditions) and lifespan maintenance; and the functional role of such isoforms is linked to the modification of the primary and secondary structures at their C-termini.
Collapse
|
11
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
12
|
Ren M, Miller PC, Schlame M, Phoon CKL. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? Am J Physiol Heart Circ Physiol 2019; 317:H1183-H1193. [PMID: 31603701 DOI: 10.1152/ajpheart.00504.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric heart failure remains poorly understood, distinct in many aspects from adult heart failure. Limited data point to roles of altered mitochondrial functioning and, in particular, changes in mitochondrial lipids, especially cardiolipin. Barth syndrome is a mitochondrial disorder caused by tafazzin mutations that lead to abnormal cardiolipin profiles. Patients are afflicted by cardiomyopathy, skeletal myopathy, neutropenia, and growth delay. A mouse model of Barth syndrome was developed a decade ago, which relies on a doxycycline-inducible short hairpin RNA to knock down expression of tafazzin mRNA (TAZKD). Our objective was to review published data from the TAZKD mouse to determine its contributions to our pathogenetic understanding of, and potential treatment strategies for, Barth syndrome. In regard to the clinical syndrome, the reported physiological, biochemical, and ultrastructural abnormalities of the mouse model mirror those in Barth patients. Using this model, the peroxisome proliferator-activated receptor pan-agonist bezafibrate has been suggested as potential therapy because it ameliorated the cardiomyopathy in TAZKD mice, while increasing mitochondrial biogenesis. A clinical trial is now underway to test bezafibrate in Barth syndrome patients. Thus the TAZKD mouse model of Barth syndrome has led to important insights into disease pathogenesis and therapeutic targets, which can potentially translate to pediatric heart failure.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Paighton C Miller
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Colin K L Phoon
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| |
Collapse
|
13
|
Semba RD, Moaddel R, Zhang P, Ramsden CE, Ferrucci L. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Med Hypotheses 2019; 127:142-149. [PMID: 31088638 DOI: 10.1016/j.mehy.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and physical performance that occurs during aging, is highly prevalent among the elderly. Sarcopenia increases the risk of falls, disability, and death. The biological basis for sarcopenia is not well understood. There are no specific preventive or therapeutic strategies for sarcopenia except exercise. The elucidation of biological pathways and identification of therapeutic targets for treating or preventing sarcopenia remain a high priority in aging research. Mitochondria play a critical role in skeletal muscle by providing energy in the form of ATP, regulation of signaling, calcium homeostasis, autophagy, and other functions. Cardiolipin, a unique dimeric phospholipid specific to mitochondria and an essential component of mitochondrial membranes, is involved in mitochondrial protein transport, maintaining structural organization of mitochondrial membranes, cellular signaling, regulating enzymes involved in β-oxidation of fatty acids, and facilitating normal electron transport chain (ETC) function and generation of ATP. The fatty acid species composition of cardiolipin is critical to mitochondrial bioenergetics, as cardiolipin affects membrane biophysical properties, binds and stabilizes ETC protein complexes, and shapes the curvature of the mitochondrial cristae. Tetra-linoleoyl cardiolipin (18:2)4 comprises ∼80% of cardiolipin in mitochondria in normal human skeletal and cardiac muscle and is optimal for effective ETC function and ATP generation. Aging is associated with a decrease in cardiolipin content, decrease in tetra-linoleoyl cardiolipin (18:2)4 and replacement of linoleic acid (18:2) with other fatty acids in cardiolipin composition, decline of ETC function, and increased generation of reactive oxygen species in muscle. Together, these findings from the literature prompt the hypothesis that depletion of the cardiolipin (18:2)4 species may be at the root of mitochondrial dysfunction with aging, in turn leading to sarcopenia. Corroboration of the tetra-linoleoyl cardiolipin depletion hypothesis suggests new leads for the prevention and treatment of sarcopenia by enhancing the biosynthesis, accretion, and integrity of tetra-linoleoyl cardiolipin.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher E Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
14
|
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1039-1052. [PMID: 30951877 DOI: 10.1016/j.bbalip.2019.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization. However, it remains unclear in the literature as to which is the key regulator of mitochondrial membrane biophysical properties. We review the literature to discriminate the effects of CL concentration and acyl chain composition on mitochondrial membrane organization. A widely applicable theme emerges across several pathologies, including cardiovascular diseases, diabetes, Barth syndrome, and neurodegenerative ailments. The loss of CL, often accompanied by increased levels of lyso-CLs, impairs mitochondrial inner membrane organization. Modest remodeling of CL acyl chains is not a major driver of impairments and only in cases of extreme remodeling is there an influence on membrane properties.
Collapse
|
15
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
16
|
Goh B, Kim J, Seo S, Kim TY. High-Throughput Measurement of Lipid Turnover Rates Using Partial Metabolic Heavy Water Labeling. Anal Chem 2018; 90:6509-6518. [DOI: 10.1021/acs.analchem.7b05428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Mejia EM, Zegallai H, Bouchard ED, Banerji V, Ravandi A, Hatch GM. Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. J Biol Chem 2018; 293:7564-7577. [PMID: 29563154 DOI: 10.1074/jbc.ra117.001024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial polyglycerophospholipid cardiolipin (CL) is remodeled to obtain specific fatty acyl chains. This is predominantly accomplished by the transacylase enzyme tafazzin (TAZ). Barth syndrome (BTHS) patients with TAZ gene mutations exhibit impaired TAZ activity and loss in mitochondrial respiratory function. Previous studies identified monolysocardiolipin acyltransferase-1 (MLCL AT-1) as a mitochondrial enzyme capable of remodeling CL with fatty acid. In this study, we analyzed what relationship, if any, exists between TAZ and MLCL AT-1 with regard to CL remodeling and whether transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct improves mitochondrial respiratory function. In healthy lymphoblasts, reduction in TAZ expression through TAZ RNAi transfection resulted in a compensatory increase in MLCL AT-1 mRNA, protein, and enzyme activity, but CL mass was unaltered. In contrast, BTHS lymphoblasts exhibited decreased TAZ gene and protein expression but in addition decreased MLCL AT-1 expression and CL mass. Transfection of BTHS lymphoblasts with MLCL AT-1 expression construct increased CL, improved mitochondrial basal respiration and protein leak, and decreased the proportion of cells producing superoxide but did not restore CL molecular species composition to control levels. In addition, BTHS lymphoblasts exhibited higher rates of glycolysis compared with healthy controls to compensate for reduced mitochondrial respiratory function. Mitochondrial supercomplex assembly was significantly impaired in BTHS lymphoblasts, and transfection of BTHS lymphoblasts with MLCL AT-1 expression construct did not restore supercomplex assembly. The results suggest that expression of MLCL AT-1 depends on functional TAZ in healthy cells. In addition, transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct compensates, but not completely, for loss of mitochondrial respiratory function.
Collapse
Affiliation(s)
- Edgard M Mejia
- From the Department of Pharmacology and Therapeutics and.,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Hana Zegallai
- From the Department of Pharmacology and Therapeutics and
| | - Eric D Bouchard
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, Winnipeg, Manitoba R2H 2A6, Canada, and
| | - Grant M Hatch
- From the Department of Pharmacology and Therapeutics and .,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
18
|
Ohlig T, Le DV, Gardemann A, Wolke C, Gürtler S, Peter D, Schild L, Lendeckel U. Effects of siRNA-dependent knock-down of cardiolipin synthase and tafazzin on mitochondria and proliferation of glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:379-387. [PMID: 29325722 DOI: 10.1016/j.bbalip.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function, and cell proliferation. Changes in CL are often paralleled by changes in the lipid environment of mitochondria that may contribute to mitochondrial function and proliferation. This study aimed to separate the effects of CL content and CL composition from cellular free fatty acid distribution on bioenergetics and proliferation in C6 glioma cells. To this end, cardiolipin synthase and the CL remodelling enzyme, tafazzin, were knocked-down by siRNA in C6 cells. After 72 h of cultivation, we analysed CL composition by means of LC/MS/MS, distribution of cellular fatty acids by means of gas chromatography, and determined oxygen consumption and proliferation. Knock-down of cardiolipin synthase affected the cellular CL content in the presence of linoleic acid (LA) in the culture medium. Knock-down of tafazzin had no consequence with respect to the pattern of cellular fatty acids but caused a decrease in cell proliferation. It significantly changed the distribution of molecular CL species, increased CL content, decreased oxygen consumption, and decreased cell proliferation when cultured in the presence of linoleic acid (LA). The addition of linoleic acid to the culture medium caused significant changes in the pattern of cellular fatty acids and the composition of molecular CL species. These data suggest that tafazzin is required for efficient bioenergetics and for proliferation of glioma cells. Supplementation of fatty acids can be a powerful tool to direct specific changes in these parameters.
Collapse
Affiliation(s)
- Theresa Ohlig
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Do Viet Le
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Andreas Gardemann
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sarah Gürtler
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Daniela Peter
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany.
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17475 Greifswald, Germany
| |
Collapse
|
19
|
Dudek J, Maack C. Barth syndrome cardiomyopathy. Cardiovasc Res 2017; 113:399-410. [PMID: 28158532 DOI: 10.1093/cvr/cvx014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Barth syndrome (BTHS) is an inherited form of cardiomyopathy, caused by a mutation within the gene encoding the mitochondrial transacylase tafazzin. Tafazzin is involved in the biosynthesis of the unique phospholipid cardiolipin (CL), which is almost exclusively found in mitochondrial membranes. CL directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins, involved in shaping mitochondrial morphology. Here we describe, how in BTHS CL deficiency causes changes in the morphology of mitochondria, structural changes in the respiratory chain, decreased respiration, and increased generation of reactive oxygen species. A large number of cellular and animal models for BTHS have been established to elucidate how mitochondrial dysfunction induces sarcomere disorganization and reduced contractility, resulting in dilated cardiomyopathy in vivo.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
20
|
Sparvero LJ, Amoscato AA, Fink AB, Anthonymuthu T, New L, Kochanek P, Watkins S, Kagan V, Bayır H. Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J Neurochem 2016; 139:659-675. [PMID: 27591733 PMCID: PMC5323070 DOI: 10.1111/jnc.13840] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) leads to changes in ion fluxes, alterations in mitochondrial function, and increased generation of reactive oxygen species, resulting in secondary tissue damage. Mitochondria play important signaling roles in coordination of multiple metabolic platforms in addition to their well-known role in bioenergetics. Mitochondrial signaling strongly depends on cardiolipin (CL), a mitochondria-specific structurally unusual anionic phospholipid containing four fatty acyl chains. While our previous reports indicated that CL is selectively oxidized and presents itself as a target for the redox therapy following TBI, the topography of changes of CL in the injured brain remained to be defined. Here, we present a matrix-assisted laser desorption/ionization imaging study which reports regio-specific changes in CL, in a controlled cortical impact model of TBI in rats. Matrix-assisted laser desorption/ionization imaging revealed that TBI caused early decreases in CL in the contusional cortex, ipsilateral hippocampus, and thalamus with the most highly unsaturated CL species being most susceptible to loss. Phosphatidylinositol was the only other lipid species that exhibited a significant decrease, albeit to a lesser extent than CL. Signals for other lipids remained unchanged. This is the first study evaluating the spatial distribution of CL loss after acute brain injury. We propose that the CL loss may constitute an upstream mechanism for CL-driven signaling in different brain regions as an early response mechanism and may also underlie the bioenergetic changes that occur in hippocampal, cortical, and thalamic mitochondria after TBI.
Collapse
Affiliation(s)
- L. J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. B. Fink
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T. Anthonymuthu
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - L.E. New
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P.M. Kochanek
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - V.E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H. Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:3-7. [PMID: 27556952 DOI: 10.1016/j.bbalip.2016.08.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Among mitochondrial lipids, cardiolipin occupies a unique place. It is the only phospholipid that is specific to mitochondria and although it is merely a minor component, accounting for 10-20% of the total phospholipid content, cardiolipin plays an important role in the molecular organization, and thus the function of the cristae. This review covers the formation of cardiolipin, a phospholipid dimer containing two phosphatidyl residues, and its assembly into mitochondrial membranes. While a large body of literature exists on this topic, the review focuses on papers that appeared in the past three years. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
22
|
Xu Y, Phoon CK, Berno B, D’Souza K, Hoedt E, Zhang G, Neubert TA, Epand RM, Ren M, Schlame M. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 2016; 12:641-7. [PMID: 27348092 PMCID: PMC4955704 DOI: 10.1038/nchembio.2113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
Collapse
Affiliation(s)
- Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, USA
| | - Bob Berno
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Kenneth D’Souza
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas A. Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Richard M. Epand
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
23
|
Kimura T, Jennings W, Epand RM. Roles of specific lipid species in the cell and their molecular mechanism. Prog Lipid Res 2016; 62:75-92. [PMID: 26875545 DOI: 10.1016/j.plipres.2016.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
Thousands of different molecular species of lipids are present within a single cell, being involved in modulating the basic processes of life. The vast number of different lipid species can be organized into a number of different lipid classes, which may be defined as a group of lipids with a common chemical structure, such as the headgroup, apart from the nature of the hydrocarbon chains. Each lipid class has unique biological roles. In some cases, a relatively small change in the headgroup chemical structure can result in a drastic change in function. Such phenomena are well documented, and largely understood in terms of specific interactions with proteins. In contrast, there are observations that the entire structural specificity of a lipid molecule, including the hydrocarbon chains, is required for biological activity through specific interactions with membrane proteins. Understanding of these phenomena represents a fundamental change in our thinking of the functions of lipids in biology. There are an increasing number of diverse examples of roles for specific lipids in cellular processes including: Signal transduction; trafficking; morphological changes; cell division. We are gaining knowledge and understanding of the underlying molecular mechanisms. They are of growing importance in both basic and applied sciences.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
24
|
Gaspard GJ, McMaster CR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem Phys Lipids 2015; 193:1-10. [PMID: 26415690 DOI: 10.1016/j.chemphyslip.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
Cardiolipin (CL) is a phospholipid with many unique characteristics. CL is synthesized in the mitochondria and resides almost exclusively within the mitochondrial inner membrane. Unlike most phospholipids that have two fatty acyl chains, CL possesses four fatty acyl chains resulting in unique biophysical characteristics that impact several biological processes including membrane fission and fusion. In addition, several proteins directly bind CL including proteins within the electron transport chain, the ADP/ATP carrier, and proteins that mediate mitophagy. Tafazzin is an enzyme that remodels saturated fatty acyl chains within CL to unsaturated fatty acyl chains, loss of function mutations in the TAZ gene encoding tafazzin are causal for the inherited cardiomyopathy Barth syndrome. Cells from Barth syndrome patients as well as several models of Barth have reduced mitochondrial functions including impaired electron transport chain function and increased reactive oxygen species (ROS) production. Mitochondria in cells from Barth syndrome patients, as well as several model organism mimics of Barth syndrome, are large and lack cristae consistent with the recently described role of CL participating in the generation of mitochondrial membrane contact sites. Cells with an inactive TAZ gene have also been shown to have a decreased capacity to undergo mitophagy when faced with stresses such as increased ROS or decreased mitochondrial quality control. This review describes CL metabolism and how defects in CL metabolism cause Barth syndrome, the etiology of Barth syndrome, and known modifiers of Barth syndrome phenotypes some of which could be explored for their amelioration of Barth syndrome in higher organisms.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R McMaster
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
25
|
Stepanyants N, Macdonald PJ, Francy CA, Mears JA, Qi X, Ramachandran R. Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 2015; 26:3104-16. [PMID: 26157169 PMCID: PMC4551322 DOI: 10.1091/mbc.e15-06-0330] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
Fluid cardiolipin (CL) promotes self-assembly of Drp1, a dynamin-family GTPase involved in mitochondrial fission. Drp1 sequesters CL into condensed membrane platforms and in a GTP-dependent manner increases the propensity of the lipid to undergo a nonbilayer phase transition. CL reorganization generates local membrane constriction for fission. Cardiolipin (CL) is an atypical, dimeric phospholipid essential for mitochondrial dynamics in eukaryotic cells. Dynamin-related protein 1 (Drp1), a cytosolic member of the dynamin superfamily of large GTPases, interacts with CL and functions to sustain the balance of mitochondrial division and fusion by catalyzing mitochondrial fission. Although recent studies have indicated a role for CL in stimulating Drp1 self-assembly and GTPase activity at the membrane surface, the mechanism by which CL functions in membrane fission, if at all, remains unclear. Here, using a variety of fluorescence spectroscopic and imaging approaches together with model membranes, we demonstrate that Drp1 and CL function cooperatively in effecting membrane constriction toward fission in three distinct steps. These involve 1) the preferential association of Drp1 with CL localized at a high spatial density in the membrane bilayer, 2) the reorganization of unconstrained, fluid-phase CL molecules in concert with Drp1 self-assembly, and 3) the increased propensity of CL to transition from a lamellar, bilayer arrangement to an inverted hexagonal, nonbilayer configuration in the presence of Drp1 and GTP, resulting in the creation of localized membrane constrictions that are primed for fission. Thus we propose that Drp1 and CL function in concert to catalyze mitochondrial division.
Collapse
Affiliation(s)
- Natalia Stepanyants
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Patrick J Macdonald
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Christopher A Francy
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Jason A Mears
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
26
|
Polyunsaturated fatty acids incorporation into cardiolipin in H9c2 cardiac myoblast. J Nutr Biochem 2015; 26:769-75. [PMID: 25866137 DOI: 10.1016/j.jnutbio.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/24/2014] [Accepted: 02/10/2015] [Indexed: 01/14/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), known as ω-3 polyunsaturated fatty acid (PUFA), are common nutrients in daily food intake and have been shown to prevent cardiovascular disease and improve cardiac functions. Cardiolipin is a mitochondrial phospholipid necessary for maintaining physiological function of mitochondria. Several studies have indicated that the cardiolipin acyl chain compositions affect the function of cardiolipin and mitochondria. Here, we investigated the structural changes of cardiolipin after DHA and EPA supplementation and compared them to arachidonic acid (AA) treatment. H9c2 cardiac myoblast was used as a cell model, and cardiolipin species was monitored and identified via LC-MS and MS/MS. Our results showed distinct mass envelopes of cardiolipin with the same carbon number but different double bonds in mass spectrum. There were 116 cardiolipin species with 36 distinct mass in 6 mass envelopes identified by MS/MS. Three days of PUFA treatment resulted in decreases of low-molecular-weight cardiolipin and increases of high-molecular-weight cardiolipin, suggesting the incorporation of exogenous DHA, EPA and AA into mitochondrial cardiolipin. PUFA incorporation was further verified by MS/MS analysis. More importantly, we found that DHA supplementation elevated the percent content of less unsaturated cardiolipin species and highly unsaturated cardiolipin species, containing ω-3 fatty acyl chains, indicating a ω-3 fatty acid incorporation mechanism with peroxidation protection. Our results indicate that PUFA supplementation differentially perturbed the fatty acyl chain compositions in the mitochondrial cardiolipin in the H9c2 cardiac myoblast, suggesting that mitochondrial membrane and the function of mitochondria are susceptible to exogenous lipid species.
Collapse
|
27
|
Mayr JA. Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 2015; 38:137-44. [PMID: 25082432 DOI: 10.1007/s10545-014-9748-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022]
Abstract
Mitochondrial membranes have a unique lipid composition necessary for proper shape and function of the organelle. Mitochondrial lipid metabolism involves biosynthesis of the phospholipids phosphatidylethanolamine, cardiolipin and phosphatidylglycerol, the latter is a precursor of the late endosomal lipid bis(monoacylglycero)phosphate. It also includes mitochondrial fatty acid synthesis necessary for the formation of the lipid cofactor lipoic acid. Furthermore the synthesis of coenzyme Q takes place in mitochondria as well as essential parts of the steroid and vitamin D metabolism. Lipid transport and remodelling, which are necessary for tailoring and maintaining specific membrane properties, are just partially unravelled. Mitochondrial lipids are involved in organelle maintenance, fission and fusion, mitophagy and cytochrome c-mediated apoptosis. Mutations in TAZ, SERAC1 and AGK affect mitochondrial phospholipid metabolism and cause Barth syndrome, MEGDEL and Sengers syndrome, respectively. In these disorders an abnormal mitochondrial energy metabolism was found, which seems to be due to disturbed protein-lipid interactions, affecting especially enzymes of the oxidative phosphorylation. Since a growing number of enzymes and transport processes are recognised as parts of the mitochondrial lipid metabolism, a further increase of lipid-related disorders can be expected.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020, Austria,
| |
Collapse
|
28
|
Chao YJ, Chang WH, Ting HC, Chao WT, Hsu YHH. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling. PLoS One 2014; 9:e113680. [PMID: 25422939 PMCID: PMC4244155 DOI: 10.1371/journal.pone.0113680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.
Collapse
Affiliation(s)
- Yu-Jen Chao
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wan-Hsin Chang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Klein-Seetharaman J, Kagan VE. Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:271-8. [PMID: 25231795 DOI: 10.1007/s00210-014-1047-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
A novel paradigm for the function of the mitochondrial nucleoside diphosphate kinase NM23-H4/NDPK-D is proposed: acting as a bifunctional nanoswitch in bioenergetics and cardiolipin (CL) trafficking and signaling. Similar to some other mitochondrial proteins like cytochrome c or AIF, NM23-H4 seems to have dual functions in bioenergetics and apoptotic signaling. In its bioenergetic phosphotransfer mode, the kinase reversibly phosphorylates NDPs into NTPs, driven by mitochondrially generated ATP. Among others, this reaction can locally supply GTP to mitochondrial GTPases as shown for the dynamin-like GTPase OPA1, found in a complex together with NM23-H4. Further, NM23-H4 is functionally coupled to adenylate translocase (ANT) of the mitochondrial inner membrane (MIM), so generated ADP can stimulate respiration to rapidly regenerate ATP. The lipid transfer mode of NM23-H4 can support, dependent on the presence of CL, the transfer of anionic lipids between membranes in vitro and the sorting of CL from its mitochondrial sites of synthesis (MIM) to the mitochondrial outer membrane (MOM) in vivo. Such (partial) collapse of MIM/MOM CL asymmetry results in CL externalization on the mitochondrial surface, where CL can serve as pro-apoptotic or pro-mitophagic "eat me"-signal. The functional state of NM23-H4 depends on its degree of CL-membrane interaction. In vitro assays have shown that only NM23-H4 that fully cross-links two membranes is lipid transfer competent, but at the same time phosphotransfer (kinase) inactive. Thus, the two functions of NM23-H4 seem to be mutually exclusive. This novel mitochondrial regulatory circuit has potential for the development of interventions in various human pathologies.
Collapse
Affiliation(s)
- Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France,
| | | | | | | | | | | | | |
Collapse
|
30
|
Ren M, Phoon CKL, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014; 55:1-16. [PMID: 24769127 DOI: 10.1016/j.plipres.2014.04.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Since it has been recognized that mitochondria are crucial not only for energy metabolism but also for other cellular functions, there has been a growing interest in cardiolipin, the specific phospholipid of mitochondrial membranes. Indeed, cardiolipin is a universal component of mitochondria in all eukaryotes. It has a unique dimeric structure comprised of two phosphatidic acid residues linked by a glycerol bridge, which gives rise to unique physicochemical properties. Cardiolipin plays an important role in the structural organization and the function of mitochondrial membranes. In this article, we review the literature on cardiolipin biology, focusing on the most important discoveries of the past decade. Specifically, we describe the formation, the migration, and the degradation of cardiolipin and we discuss how cardiolipin affects mitochondrial function. We also give an overview of the various phenotypes of cardiolipin deficiency in different organisms.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA.
| |
Collapse
|
31
|
|