1
|
El Hajj F, Fuchs PFJ, Urbach W, Nassereddine M, Hamieh S, Taulier N. Molecular Study of Ultrasound-Triggered Release of Fluorescein from Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3868-3881. [PMID: 33769822 DOI: 10.1021/acs.langmuir.0c03444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several investigations have suggested that ultrasound triggers the release of drugs encapsulated into liposomes at acoustic pressures low enough to avoid cavitation or high hyperthermia. However, the mechanism leading to this triggered release as well as the adequate composition of the liposome membrane remains unknown. Here, we investigate the ultrasound-triggered release of fluorescein disodium salt encapsulated into liposomes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-distearoylphosphatidyl-ethanolamine (DSPC) lipids with various concentrations of cholesterol (from 0 to 44 mol %). The passive release of encapsulated fluorescein was first characterized. It was observed to be higher when the membrane is in a fluid phase and increased with temperature but decreased upon addition of cholesterol. Next, the release of fluorescein was measured at different acoustic frequencies (0.8, 1.1, and 3.3 MHz) and peak-to-peak pressures (0, 2, 2.5, 5, and 8 MPa). Measurements were performed at temperatures where DOPC and DSPC liposomes were, respectively, in the fluid or gel phase. We found that the release rate did not depend on the ultrasound frequency. For DOPC liposomes, the ultrasound-triggered release of fluorescein decreased with increasing concentration of cholesterol in liposomes, while the behavior was more complex for DSPC liposomes. Overall, the triggered release from DSPC liposomes was up to ten times less than DOPC liposomes. Molecular dynamics simulations performed on a pure DOPC membrane showed that a membrane experiences, under a directional pressure of ±2.4 MPa, various changes in properties such as the area per lipid (APL). An increase in the APL was notably observed when the simulation box was laterally stretched or perpendicularly compressed, which was accompanied by an increase in the number of water molecules crossing the membrane. This suggests that ultrasound most probably enhances the diffusion of encapsulated molecules at small acoustic pressures by increasing the distance between lipids.
Collapse
Affiliation(s)
- Fatima El Hajj
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
- Faculté des Sciences, Université Libanaise, Hadath 1003, Liban
| | - Patrick F J Fuchs
- Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), F-75005 Paris, France
| | - Wladimir Urbach
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | | - Salah Hamieh
- Faculté des Sciences, Université Libanaise, Hadath 1003, Liban
| | - Nicolas Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| |
Collapse
|
2
|
Belička M, Weitzer A, Pabst G. High-resolution structure of coexisting nanoscopic and microscopic lipid domains. SOFT MATTER 2017; 13:1823-1833. [PMID: 28170020 DOI: 10.1039/c6sm02727j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We studied coexisting micro- and nanoscopic liquid-ordered/liquid-disordered domains in fully hydrated multilamellar vesicles using small-angle X-ray scattering. Large domains exhibited long-range out-of-plane positional correlations of like domains, consistent with previous reports. In contrast, such correlations were absent in nanoscopic domains. Advancing a global analysis of the in situ data allowed us to gain a deep insight into the structural and elastic properties of the coexisting domains, including the partitioning of cholesterol in each domain. In agreement with a previous report, we found that the thickness mismatch between ordered and disordered domains decreased for nanoscopic domains. At the same time, we found also the lipid packing mismatch to be decreased for nano-domains, mainly due to the liquid-disordered domains becoming more densely packed when decreasing their size.
Collapse
Affiliation(s)
- Michal Belička
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| | - Anna Weitzer
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
3
|
Marquardt D, Kučerka N, Wassall SR, Harroun TA, Katsaras J. Cholesterol's location in lipid bilayers. Chem Phys Lipids 2016; 199:17-25. [DOI: 10.1016/j.chemphyslip.2016.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 02/07/2023]
|