1
|
Segars B, Makhoul-Mansour M, Beyrouthy J, Freeman EC. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11228-11238. [PMID: 38753461 PMCID: PMC11140749 DOI: 10.1021/acs.langmuir.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.
Collapse
Affiliation(s)
- Braydon
G. Segars
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Michelle Makhoul-Mansour
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
- Mechanical,
Agricultural, Biomedical, and Environmental Engineering Department,
Tickle College of Engineering, University
of Tennessee Knoxville, 1512 Middle Dr., Knoxville, Tennessee 37916, United States
| | - Joyce Beyrouthy
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Eric C. Freeman
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| |
Collapse
|
2
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Liu S, Li Y, Shi L, Liu J, Ren Y, Laman JD, van der Mei HC, Busscher HJ. Maintaining sidedness and fluidity in cell membrane coatings supported on nano-particulate and planar surfaces. Bioact Mater 2024; 32:344-355. [PMID: 37927898 PMCID: PMC10622627 DOI: 10.1016/j.bioactmat.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Supported cell membrane coatings meet many requirements set to bioactive nanocarriers and materials, provided sidedness and fluidity of the natural membrane are maintained upon coating. However, the properties of a support-surface responsible for maintaining correct sidedness and fluidity are unknown. Here, we briefly review the properties of natural membranes and membrane-isolation methods, with focus on the asymmetric distribution of functional groups in natural membranes (sidedness) and the ability of molecules to float across a membrane to form functional domains (fluidity). This review concludes that hydrophilic sugar-residues of glycoproteins in the outer-leaflet of cell membranes direct the more hydrophobic inner-leaflet towards a support-surface to create a correctly-sided membrane coating, regardless of electrostatic double-layer interactions. On positively-charged support-surfaces however, strong, electrostatic double-layer attraction of negatively-charged membranes can impede homogeneous coating. In correctly-sided membrane coatings, fluidity is maintained regardless of whether the surface carries a positive or negative charge. However, membranes are frozen on positively-charged, highly-curved, small nanoparticles and localized nanoscopic structures on a support-surface. This leaves an unsupported membrane coating in between nanostructures on planar support-surfaces that is in dual-sided contact with its aqueous environment, yielding enhanced fluidity in membrane coatings on nanostructured, planar support-surfaces as compared with smooth ones.
Collapse
Affiliation(s)
- Sidi Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, 325035, PR China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jon D. Laman
- University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
4
|
Stangel C, Kagkoura A, Pippa N, Stellas D, Zhang M, Okazaki T, Demetzos C, Tagmatarchis N. Preclinical evaluation of modified carbon nanohorns and their complexation with insulin. NANOSCALE ADVANCES 2023; 5:6847-6857. [PMID: 38059018 PMCID: PMC10696926 DOI: 10.1039/d3na00471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
The current study emphasizes the minimal toxicity observed in vitro and in vivo for carbon nanohorns (CNHs) modified with third generation polyamidoamine (PAMAM) dendrimers. Initially, we investigated the interactions between CNH-PAMAM and lipid bilayers, which were utilized as representative models of cellular membranes for the evaluation of their toxicity in vitro. We found that the majority of those interactions occur between the modified CNHs and the polar groups of phospholipids, meaning that CNH-PAMAM does not incorporate into the lipid chains, and thus, disruption of the lipid bilayer structure is avoided. This outcome is a very important observation for further evaluation of CNH-PAPAM in cell lines and in animal models. Next, we demonstrated the potential of CNH-PAMAM for complexation with insulin, as a proof of concept for its employment as a delivery platform. Importantly, our study provides comprehensive evidence of low toxicity for CNH-PAMAM both in vitro and in vivo. The assessment of cellular toxicity revealed that the modified CNHs exhibited minimal toxicity, with concentrations of 151 μg mL-1 and 349 μg mL-1, showing negligible harm to EO771 cells and mouse embryonic fibroblasts (MEFs), respectively. Moreover, the histological analysis of the mouse livers demonstrated no evidence of tissue necrosis and inflammation, or any visible signs of severe toxicity. These findings collectively indicate the safe profile of CNH-PAMAM and further contribute to the growing body of knowledge on the safe and efficient utilization of CNH-based nanomaterials in drug and protein delivery applications.
Collapse
Affiliation(s)
- Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Minfang Zhang
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Toshiya Okazaki
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
5
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Lin X, Lin K, He S, Zhou Y, Li X, Lin X. Membrane Domain Anti-Registration Induces an Intrinsic Transmembrane Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11621-11627. [PMID: 37563986 DOI: 10.1021/acs.langmuir.3c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Plasma membrane segregation into various nanoscale membrane domains is driven by distinct interactions between diverse lipids and proteins. Among them, liquid-ordered (Lo) membrane domains are defined as "lipid rafts" and liquid-disordered (Ld) ones as "lipid non-rafts". Using model membrane systems, both intra-leaflet and inter-leaflet dynamics of these membrane domains are widely studied. Nevertheless, the biological impact of the latter, which is accompanied by membrane domain registration/anti-registration, is far from clear. Hence, in this work, we studied the biological relevance of the membrane domain anti-registration using both all-atom molecular dynamics (MD) simulations and confocal fluorescence microscopy. All-atom MD simulations suggested an intrinsic transmembrane potential for the case of the membrane anti-registration (Lo/Ld). Meanwhile, confocal fluorescence microscopy experiments of HeLa and 293T cell lines indicated that membrane cholesterol depletion could significantly alter the transmembrane potential of cells. Considering differences in the cholesterol content between Lo and Ld membrane domains, our confocal fluorescence microscopy experiments are consistent with our all-atom MD simulations. In short, membrane domain anti-registration induces local membrane asymmetry and, thus, an intrinsic transmembrane potential.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Kaidong Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shiqi He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yue Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Skotland T, Llorente A, Sandvig K. Lipids in Extracellular Vesicles: What Can Be Learned about Membrane Structure and Function? Cold Spring Harb Perspect Biol 2023; 15:a041415. [PMID: 37277192 PMCID: PMC10411865 DOI: 10.1101/cshperspect.a041415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extracellular vesicles, such as exosomes, can be used as interesting models to study the structure and function of biological membranes as these vesicles contain only one membrane (i.e., one lipid bilayer). In addition to lipids, they contain proteins, nucleic acids, and various other molecules. The lipid composition of exosomes is here compared to HIV particles and detergent-resistant membranes, which also have a high content of sphingolipids, cholesterol, and phosphatidylserine (PS). We discuss interactions between the lipids in the two bilayers, and especially those between PS 18:0/18:1 in the inner leaflet and the very-long-chain sphingolipids in the outer leaflet, and the importance of cholesterol for these interactions. We also briefly discuss the involvement of ether-linked phospholipids (PLs) in such lipid raft-like structures, and the possible involvement of these and other lipid classes in the formation of exosomes. The urgent need to improve the quality of quantitative lipidomic studies is highlighted.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
- Department of Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
Frewein MPK, Piller P, Semeraro EF, Czakkel O, Gerelli Y, Porcar L, Pabst G. Distributing aminophospholipids asymmetrically across leaflets causes anomalous membrane stiffening. Biophys J 2023; 122:2445-2455. [PMID: 37120716 PMCID: PMC10322881 DOI: 10.1016/j.bpj.2023.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.
Collapse
Affiliation(s)
- Moritz P K Frewein
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; Institut Laue-Langevin, Grenoble, France; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Paulina Piller
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | | | - Yuri Gerelli
- CNR Institute for Complex Systems, Uos Sapienza, Roma, Italy; Department of Physics, Sapienza University of Rome, Roma, Italy
| | | | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria.
| |
Collapse
|
9
|
Arribas Perez M, Beales PA. Dynamics of asymmetric membranes and interleaflet coupling as intermediates in membrane fusion. Biophys J 2023; 122:1985-1995. [PMID: 36203354 PMCID: PMC10257014 DOI: 10.1016/j.bpj.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion is a tool to increase the complexity of model membrane systems. Here, we use silica nanoparticles to fuse liquid-disordered DOPC giant unilamellar vesicles (GUVs) and liquid-ordered DPPC:cholesterol (7:3) GUVs. After fusion, GUVs display large membrane domains as confirmed by fluorescence confocal microscopy. Laurdan spectral imaging of the membrane phases in the fused GUVs shows differences compared with the initial vesicles indicating some lipid redistribution between phase domains as dictated by the tie lines of the phase diagram. Remarkably, using real-time confocal microscopy we were able to record the dynamics of formation of asymmetric membrane domains in hemifused GUVs and detected interleaflet coupling phenomena by which the DOPC-rich liquid-disordered domains in outer monolayer modulates the phase state of the DPPC:cholesterol inner membrane leaflet which transitions from liquid-ordered to liquid-disordered phase. We find that internal membrane stresses generated by membrane asymmetry enhance the efficiency of full fusion compared with our previous studies on symmetric vesicle fusion. Furthermore, under these conditions, the liquid-disordered monolayer dictates the bilayer phase state of asymmetric membrane domains in >90% of observed cases. By comparison to the findings of previous literature, we suggest that the monolayer phase that dominates the bilayer properties could be a mechanoresponsive signaling mechanism sensitive to the local membrane environment.
Collapse
Affiliation(s)
- Marcos Arribas Perez
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Paul A Beales
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
10
|
Li S, Huang F, Xia T, Shi Y, Yue T. Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl Chain Length of Sphingomyelin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5995-6005. [PMID: 37086192 DOI: 10.1021/acs.langmuir.2c03492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.
Collapse
Affiliation(s)
- Shixin Li
- College of Bioscience and Biotechnology and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Tie Xia
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology & Infectious Disease and Snyder Institute, University of Calgary, Calgary, Alberta 00000, Canada
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
12
|
Kumari M, Kashyap HK. Wrapping-Trapping versus Extraction Mechanism of Bactericidal Activity of MoS 2 Nanosheets against Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5440-5453. [PMID: 37013340 DOI: 10.1021/acs.langmuir.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The promising broad-spectrum antibacterial activity of two-dimensional molybdenum disulfide (2D MoS2) has been widely recognized in the past decade. However, a comprehensive understanding of how the antibacterial pathways opted by the MoS2 nanosheets varies with change in lipid compositions of different bacterial strains is imperative to harness their full antibacterial potential and remains unexplored thus far. Herein, we present an atomistic molecular dynamics (MD) study to investigate the distinct modes of antibacterial action of MoS2 nanosheets against Staphylococcus aureus (S. aureus) under varying conditions. We observed that the freely dispersed nanosheets readily adhered to the bacterial membrane outer surface and opted for an unconventional surface directed "wrapping-trapping" mechanism at physiological temperature (i.e., 310 K). The adsorbed nanosheets mildly influenced the membrane structure by originating a compact packing of the lipid molecules present in its direct contact. Interestingly, these surface adsorbed nanosheets exhibited extensive phospholipid extraction to their surface, thereby inducing transmembrane water passage analogous to the cellular leakage, even at a slight increment of 20 K in the temperature. The strong van der Waals interactions between lipid fatty acyl tails and MoS2 basal planes were primarily responsible for this destructive phospholipid extraction. In addition, the MoS2 nanosheets bound to an imaginary substrate, controlling their vertical alignment, demonstrated a "nano-knives" action by spontaneously piercing inside the membrane core through their sharp corner, subsequently causing localized lipid ordering in their vicinity. The larger nanosheet produced a more profound deteriorating impact in all of the observed mechanisms. Keeping the existing knowledge about the bactericidal activity of 2D MoS2 in view, our study concludes that their antibacterial activity is strongly governed by the lipid composition of the bacterial membrane and can be intensified either by controlling the nanosheet vertical alignment or by moderately warming up the systems.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Pirhadi E, Vanegas JM, Farin M, Schertzer JW, Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J Chem Theory Comput 2023; 19:363-372. [PMID: 36579901 PMCID: PMC11521388 DOI: 10.1021/acs.jctc.2c01026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of Pseudomonas aeruginosa bacteria using two different building protocols and probe their interactions with the Pseudomonas quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.
Collapse
Affiliation(s)
- Emad Pirhadi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Juan M. Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Mithila Farin
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | | | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| |
Collapse
|
14
|
Anthony AA, Sahin O, Yapici MK, Rogers D, Honerkamp-Smith AR. Systematic measurements of interleaflet friction in supported bilayers. Biophys J 2022; 121:2981-2993. [PMID: 35754183 PMCID: PMC9388387 DOI: 10.1016/j.bpj.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
When lipid membranes curve or are subjected to strong shear forces, the two apposed leaflets of the bilayer slide past each other. The drag that one leaflet creates on the other is quantified by the coefficient of interleaflet friction, b. Existing measurements of this coefficient range over several orders of magnitude, so we used a recently developed microfluidic technique to measure it systematically in supported lipid membranes. Fluid shear stress was used to force the top leaflet of a supported membrane to slide over the stationary lower leaflet. Here, we show that this technique yields a reproducible measurement of the friction coefficient and is sensitive enough to detect differences in friction between membranes made from saturated and unsaturated lipids. Adding cholesterol to saturated and unsaturated membranes increased interleaflet friction significantly. We also discovered that fluid shear stress can reversibly induce gel phase in supported lipid bilayers that are close to the gel-transition temperature.
Collapse
|
15
|
Kumari M, Roy S, Jaiswal A, Kashyap HK. Anionic Lipid Clustering-Mediated Bactericidal Activity and Selective Toxicity of Quaternary Ammonium-Substituted Polycationic Pullulan against the Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8065-8076. [PMID: 35731708 DOI: 10.1021/acs.langmuir.2c00871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-amphiphilic polycations have recently been recognized to hold excellent antimicrobial potential with great mammalian cell compatibility. In a recent study, the excellent broad-spectrum bactericidal efficacy of a quaternary ammonium-substituted cationic pullulan (CP4) was demonstrated. Their selective toxicity and nominal probability to induce the acquisition of resistance among pathogens fulfill the fundamental requirements of new-generation antibacterials. However, there have been exiguous attempts in the literature to understand the antimicrobial activity of polycations against Gram-positive bacterial membranes. Here, for the first time, we have scrutinized the molecular level interactions of CP4 tetramers with a model Staphylococcus aureus membrane to understand their probable antibacterial function using molecular dynamics simulations. Our analysis reveals that the hydrophilic CP4 molecules are spontaneously adsorbed onto the membrane outer leaflet surface by virtue of strong electrostatic interactions and do not penetrate into the lipid tail hydrophobic region. This surface binding of CP4 is strengthened by the formation of anionic lipid-rich domains in their vicinity, causing lateral compositional heterogeneity. The major outcomes of the asymmetric accumulation of bulky polycationic CP4 on one leaflet are (i) anionic lipid segregation at the interaction site and (ii) a decrease in the cationic lipid acyl tail ordering and ease of water translocation across the lipid hydrophobic barrier. The membrane-CP4 interactions are strongly monitored by the ionic strength; a higher salt concentration weakens the binding of CP4 on the membrane surface. In addition, our study also substantiates the non-interacting behavior of CP4 oligomers with biomimetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, indicating their cell selectivity and specificity against pathogenic membranes.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Li X, Zhou S, Lin X. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. J Chem Inf Model 2022; 62:2421-2431. [PMID: 35513897 DOI: 10.1021/acs.jcim.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid, which can be uptaken by cells and is essential for proper neuronal and retinal function. However, the detailed physical impact of DHA molecules on the plasma membrane is still unclear. Hence, in this work, we carried out μs-scale coarse-grained molecular dynamics (MD) simulations to reveal the interactions between DHA molecules and a model cell membrane. As is known, the cell membrane can segregate into liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains due to the differential interactions between lipids and proteins. In order to capture this feature, we adopted the three-component phase-separated lipid membranes and considered both anionic and neutral DHA molecules in the current work. Our results showed that DHA molecules can spontaneously self-assemble into nanoclusters, fuse with lipid membranes, and localize preferably in Ld membrane domains. During the membrane fusion process, DHA molecules can change the intrinsic transmembrane potential of the lipid membrane, and the effects of anionic DHA molecules are much more significant. Besides, the presence of DHA molecules mainly in the Ld membrane domains could regulate the differences in the lipid chain order, membrane thickness, cholesterol preference, and cholesterol flip-flop basically in a concentration-dependent manner, which further promote the stability of the intraleaflet dynamics and inhibit the interleaflet dynamics (or promote membrane domain registration) of the membrane domains. In short, the impact of DHA molecules on the physical properties of a model cell membrane on the molecular level revealed in our work will provide useful insights for understanding the biological functions of DHA molecules.
Collapse
Affiliation(s)
- Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shiying Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 2022; 86:101160. [DOI: 10.1016/j.plipres.2022.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
18
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
19
|
Gora RJ, de Jong B, van Hage P, Rhiemus MA, van Steenis F, van Noort J, Schmidt T, Schaaf MJM. Analysis of the H-Ras mobility pattern in vivo shows cellular heterogeneity inside epidermal tissue. Dis Model Mech 2021; 15:274496. [PMID: 34927194 PMCID: PMC8891639 DOI: 10.1242/dmm.049099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper. Summary: Single-molecule microscopy analysis of factors altering the in vivo dynamics of H-Ras proteins in epidermal cells in living zebrafish embryos revealed that cell architecture and protein activation state determine protein mobility.
Collapse
Affiliation(s)
- Radoslaw J Gora
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Babette de Jong
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Patrick van Hage
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Mary Ann Rhiemus
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Fjodor van Steenis
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - John van Noort
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Thomas Schmidt
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Marcel J M Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| |
Collapse
|
20
|
Lin X, Lin X. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity via molecular dynamics simulation. Biomater Sci 2021; 9:8249-8258. [PMID: 34757373 DOI: 10.1039/d1bm01364e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the differential interactions among lipids and proteins, the plasma membrane can segregate into a series of functional nanoscale membrane domains ("lipid rafts"), which are essential in multiple biological processes such as signaling transduction, protein trafficking and endocytosis. On the other hand, Janus nanoparticles (NPs) have shown great promise in various biomedical applications due to their asymmetric characteristics and can integrate different surface properties and thus synergetic functions. Hence, in this work, we aim to design an amphiphilic Janus NP to target and regulate lipid rafts via tuning its surface ligand amphiphilicity using coarse-grained molecular dynamics (MD) simulations. Our μs-scale free coarse-grained MD simulations as well as umbrella sampling free energy calculations indicated that the hydrophobicity of the hydrophobic surface ligands not only determined the lateral membrane partitioning thermodynamics of Janus NPs in phase-separated lipid membranes, but also the difficulty in their insertion into different membrane domains of the lipid membrane. These two factors jointly regulated the lipid raft affinity of Janus NPs. Meanwhile, the hydrophilicity of the hydrophilic surface ligands could affect the insertion ability of Janus NPs. Besides, the ultra-small size could ensure the membrane-bound behavior of Janus NPs without disrupting the overall structure and phase separation kinetics of the lipid membrane. These results may provide valuable insights into the design of functional NPs targeting and controllably regulating lipid rafts.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China. .,Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
21
|
Smith P, Lorenz CD. LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations. J Chem Theory Comput 2021; 17:5907-5919. [PMID: 34450002 DOI: 10.1021/acs.jctc.1c00447] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are now widely used to study emergent phenomena in lipid membranes with complex compositions. Here, we present LiPyphilic-a fast, fully tested, and easy-to-install Python package for analyzing such simulations. Analysis tools in LiPyphilic include the identification of cholesterol flip-flop events, the classification of local lipid environments, and the degree of interleaflet registration. LiPyphilic is both force field- and resolution-agnostic, and by using the powerful atom selection language of MDAnalysis, it can handle membranes with highly complex compositions. LiPyphilic also offers two on-the-fly trajectory transformations to (i) fix membranes split across periodic boundaries and (ii) perform nojump coordinate unwrapping. Our implementation of nojump unwrapping accounts for fluctuations in the box volume under the NPT ensemble-an issue that most current implementations have overlooked. The full documentation of LiPyphilic, including installation instructions and links to interactive online tutorials, is available at https://lipyphilic.readthedocs.io/en/latest.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London WC2R 2LS, U.K
| | | |
Collapse
|
22
|
Sikdar S, Banerjee M, Vemparala S. Effect of cholesterol on the membrane partitioning dynamics of hepatitis A virus-2B peptide. SOFT MATTER 2021; 17:7963-7977. [PMID: 34378608 DOI: 10.1039/d1sm01019k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
| | | | | |
Collapse
|
23
|
Lin X, Lin X. Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations. NANOSCALE 2021; 13:9825-9833. [PMID: 34032262 DOI: 10.1039/d1nr01563j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Differential preferences between lipids and proteins drive the formation of dynamical nanoscale membrane domains (lipid rafts), which play key roles in the proper functioning of cells. On the other hand, due to the potent physicochemical properties of nanoparticles (NPs), they have been widely used in drug delivery, bio-imaging and regulating various essential biological processes of the cells. Hence, in this work, we aim to design ultra-small hydrophobic NPs with tunable raft affinity, which is supposed to partition into the hydrophobic region of lipid membranes and be able to regulate the dynamics of the lipid raft domains. A series of μs-scale coarse-grained molecular dynamics simulations and umbrella sampling free energy calculations were performed to investigate the role of surface ligand rigidity of ultra-small hydrophobicNPs in their raft affinity. Our results indicated that the preferred localization of NPs can be tuned by adjusting their surface ligand rigidity. Generally, rigid NPs tended to target the raft domain, while soft NPs preferred the interface of the raft and non-raft domains. The free energy analysis further indicated that the surface ligand rigidity of NPs can enhance their targeting to lipid raft domains. Besides, we found that these ultra-small NPs had no significant effects on the phase separation of the lipid membrane although they might cause some local interference to surrounding lipids. These results indicate that the targeting to the lipid raft domain can be achieved by the surface ligand rigidity of NPs, which provides helpful insights for further regulations of lipid raft-mediated biological processes.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | |
Collapse
|
24
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
25
|
Lin X, Gorfe AA. Transmembrane potential of physiologically relevant model membranes: Effects of membrane asymmetry. J Chem Phys 2021; 153:105103. [PMID: 32933265 DOI: 10.1063/5.0018303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transmembrane potential difference (Vm) plays important roles in regulating various biological processes. At the macro level, Vm can be experimentally measured or calculated using the Nernst or Goldman-Hodgkin-Katz equation. However, the atomic details responsible for its generation and impact on protein and lipid dynamics still need to be further elucidated. In this work, we performed a series of all-atom molecular dynamics (MD) simulations of symmetric model membranes of various lipid compositions and cation contents to evaluate the relationship between membrane asymmetry and Vm. Specifically, we studied the impact of the asymmetric distribution of POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine), PIP2 (phosphatidylinositol 4,5-bisphosphate), as well as Na+ and K+ on Vm using atomically detailed MD simulations of symmetric model membranes. The results suggest that, for an asymmetric POPC-POPC/POPS bilayer in the presence of NaCl, the presence of the monovalent anionic lipid POPS in the inner leaflet polarizes the membrane (ΔVm < 0). Intriguingly, replacing a third of the POPS lipids by the polyvalent anionic signaling lipid PIP2 counteracts this effect, resulting in a smaller negative membrane potential. We also found that replacing Na+ ions in the inner region by K+ depolarizes the membrane (ΔVm > 0). These divergent effects arise from variations in the strength of cation-lipid interactions and are correlated with changes in lipid chain order and head-group orientation.
Collapse
Affiliation(s)
- Xubo Lin
- Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Moitra S, Basu S, Pawlowic M, Hsu FF, Zhang K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front Cell Infect Microbiol 2021; 11:647870. [PMID: 33777852 PMCID: PMC7996062 DOI: 10.3389/fcimb.2021.647870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in Leishmania. PC synthesis mainly occurs via the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, Leishmania parasites can acquire PC and other lipids from the host or culture medium. In this study, we assessed the function and essentiality of choline ethanolamine phosphotransferase (CEPT) in Leishmania major which is responsible for the final step of the de novo synthesis of PC and PE. Our data indicate that CEPT is localized in the endoplasmic reticulum and possesses the activity to generate PC from CDP-choline and diacylglycerol. Targeted deletion of CEPT is only possible in the presence of an episomal CEPT gene in the promastigote stage of L. major. These chromosomal null parasites require the episomal expression of CEPT to survive in culture, confirming its essentiality during the promastigote stage. In contrast, during in vivo infection of BALB/c mice, these chromosomal null parasites appeared to lose the episomal copy of CEPT while maintaining normal levels of virulence, replication and cellular PC. Therefore, while the de novo synthesis of PC/PE is indispensable for the proliferation of promastigotes, intracellular amastigotes appear to acquire most of their lipids through salvage and remodeling.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mattie Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
27
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
28
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
29
|
Yee SM, Gillams RJ, McLain SE, Lorenz CD. Effects of lipid heterogeneity on model human brain lipid membranes. SOFT MATTER 2021; 17:126-135. [PMID: 33155582 DOI: 10.1039/d0sm01766c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell membranes naturally contain a heterogeneous lipid distribution. However, homogeneous bilayers are commonly preferred and utilised in computer simulations due to their relative simplicity, and the availability of lipid force field parameters. Recently, experimental lipidomics data for the human brain cell membranes under healthy and Alzheimer's disease (AD) conditions were investigated, since disruption to the lipid composition has been implicated in neurodegenerative disorders, including AD [R. B. Chan et al., J. Biol. Chem., 2012, 287, 2678-2688]. In order to observe the effects of lipid complexity on the various bilayer properties, molecular dynamics simulations were used to study four membranes with increasing heterogeneity: a pure POPC membrane, a POPC and cholesterol membrane in a 1 : 1 ratio (POPC-CHOL), and to our knowledge, the first realistic models of a healthy brain membrane and an Alzheimer's diseased brain membrane. Numerous structural, interfacial, and dynamical properties, including the area per lipid, interdigitation, dipole potential, and lateral diffusion of the two simple models, POPC and POPC-CHOL, were analysed and compared to those of the complex brain models consisting of 27 lipid components. As the membranes gain heterogeneity, a number of alterations were found in the structural and dynamical properties, and more significant differences were observed in the lateral diffusion. Additionally, we observed snorkeling behaviour of the lipid tails that may play a role in the permeation of small molecules across biological membranes. In this work, atomistic description of realistic brain membrane models is provided, which can add insight towards the permeability and transport pathways of small molecules across these membrane barriers.
Collapse
Affiliation(s)
- Sze May Yee
- Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Richard J Gillams
- School of Electronics and Computer Science, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sylvia E McLain
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | | |
Collapse
|
30
|
Hossein A, Deserno M. Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size. J Chem Phys 2021; 154:014704. [PMID: 33412863 DOI: 10.1063/5.0028255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular membranes consist of a large variety of lipids and proteins, with a composition that generally differs between the two leaflets of the same bilayer. One consequence of this asymmetry is thought to be the emergence of differential stress, i.e., a mismatch in the lateral tension of the two leaflets. This can affect a membrane's mechanical properties; for instance, it can increase the bending rigidity once the differential stress exceeds a critical threshold. Using coarse-grained molecular dynamics simulations based on the MARTINI model, we show that this effect arises due to the formation of more highly ordered domains in the compressed leaflet. The threshold asymmetry increases with temperature, indicating that the transition to a stiffened regime might be restricted to a limited temperature range above the gel transition. We also show that stiffening occurs more readily for larger membranes with smaller typical curvatures, suggesting that the stiffening transition is easier to observe experimentally than in the small-scale systems accessible to simulation.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
31
|
Li Y, Liu Y, Ren Y, Su L, Li A, An Y, Rotello V, Zhang Z, Wang Y, Liu Y, Liu S, Liu J, Laman JD, Shi L, van der Mei HC, Busscher HJ. Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004942. [PMID: 34737689 PMCID: PMC8562776 DOI: 10.1002/adfm.202004942] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 05/22/2023]
Abstract
Internalization of Staphylococcus aureus by macrophages can inactivate bacterial killing mechanisms, allowing intracellular residence and dissemination of infection. Concurrently, these staphylococci can evade antibiotics that are frequently unable to pass mammalian cell membranes. A binary, amphiphilic conjugate composed of triclosan and ciprofloxacin is synthesized that self-assemble through micelle formation into antimicrobial nanoparticles (ANPs). These novel ANPs are stabilized through encapsulation in macrophage membranes, providing membrane-encapsulated, antimicrobial-conjugated NPs (Me-ANPs) with similar protein activity, Toll-like receptor expression and negative surface charge as their precursor murine macrophage/human monocyte cell lines. The combination of Toll-like receptors and negative surface charge allows uptake of Me-ANPs by infected macrophages/monocytes through positively charged, lysozyme-rich membrane scars created during staphylococcal engulfment. Me-ANPs are not engulfed by more negatively charged sterile cells possessing less lysozyme at their surface. The Me-ANPs kill staphylococci internalized in macrophages in vitro. Me-ANPs likewise kill staphylococci more effectively than ANPs without membrane-encapsulation or clinically used ciprofloxacin in a mouse peritoneal infection model. Similarly, organ infections in mice created by dissemination of infected macrophages through circulation in the blood are better eradicated by Me-ANPs than by ciprofloxacin. These unique antimicrobial properties of macrophage-monocyte Me-ANPs provide a promising direction for human clinical application to combat persistent infections.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Yin Wang
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Sidi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Materials and Ministry, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
32
|
Mamode Cassim A, Grison M, Ito Y, Simon-Plas F, Mongrand S, Boutté Y. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett 2020; 594:3719-3738. [PMID: 33151562 DOI: 10.1002/1873-3468.13987] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids are fundamental lipids involved in various cellular, developmental and stress-response processes. As such, they orchestrate not only vital molecular mechanisms of living cells but also act in diseases, thus qualifying as potential pharmaceutical targets. Sphingolipids are universal to eukaryotes and are also present in some prokaryotes. Some sphingolipid structures are conserved between animals, plants and fungi, whereas others are found only in plants and fungi. In plants, the structural diversity of sphingolipids, as well as their downstream effectors and molecular and cellular mechanisms of action, are of tremendous interest to both basic and applied researchers, as about half of all small molecules in clinical use originate from plants. Here, we review recent advances towards a better understanding of the biosynthesis of sphingolipids, the diversity in their structures as well as their functional roles in membrane architecture, cellular processes such as membrane trafficking and cell polarity, and cell responses to environmental or developmental signals.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yoko Ito
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Francoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| |
Collapse
|
33
|
Miller EJ, Ratajczak AM, Anthony AA, Mottau M, Rivera Gonzalez XI, Honerkamp-Smith AR. Divide and conquer: How phase separation contributes to lateral transport and organization of membrane proteins and lipids. Chem Phys Lipids 2020; 233:104985. [DOI: 10.1016/j.chemphyslip.2020.104985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
|
34
|
Kopec W, Żak A, Jamróz D, Nakahata R, Yusa SI, Gapsys V, Kepczynski M. Polycation-Anionic Lipid Membrane Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12435-12450. [PMID: 33058724 PMCID: PMC7594277 DOI: 10.1021/acs.langmuir.0c01062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Natural or synthetic polycations are used as biocides or as drug/gene carriers. Understanding the interactions between these macromolecules and cell membranes at the molecular level is therefore of great importance for the design of effective polymer biocides or biocompatible polycation-based delivery systems. Until now, details of the processes at the interface between polycations and biological systems have not been fully recognized. In this study, we consider the effect of strong polycations with quaternary ammonium groups on the properties of anionic lipid membranes that we use as a model system for protein-free cell membranes. For this purpose, we employed experimental measurements and atomic-scale molecular dynamics (MD) simulations. MD simulations reveal that the polycations are strongly hydrated in the aqueous phase and do not lose the water shell after adsorption at the bilayer surface. As a result of strong hydration, the polymer chains reside at the phospholipid headgroup and do not penetrate to the acyl chain region. The polycation adsorption involves the formation of anionic lipid-rich domains, and the density of anionic lipids in these domains depends on the length of the polycation chain. We observed the accumulation of anionic lipids only in the leaflet interacting with the polymer, which leads to the formation of compositionally asymmetric domains. Asymmetric adsorption of the polycation on only one leaflet of the anionic membrane strongly affects the membrane properties in the polycation-membrane contact areas: (i) anionic lipid accumulates in the region near the adsorbed polymer, (ii) acyl chain ordering and lipid packing are reduced, which results in a decrease in the thickness of the bilayer, and (iii) polycation-anionic membrane interactions are strongly influenced by the presence and concentration of salt. Our results provide an atomic-scale description of the interactions of polycations with anionic lipid bilayers and are fully supported by the experimental data. The outcomes are important for understanding the correlation of the structure of polycations with their activity on biomembranes.
Collapse
Affiliation(s)
- Wojciech Kopec
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Agata Żak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dorota Jamróz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Rina Nakahata
- Department
of Applied Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Department
of Applied Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariusz Kepczynski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
35
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
36
|
Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts 2020. [DOI: 10.3390/catal10090997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review describes the use of phospholipase D (PLD) to perform the transphosphatidylation of the most common natural phospholipid (PL), phosphatidylcholine (PC) to obtain polar head modified phospholipids with real targeted applications. The introduction of different polar heads with distinctive physical and chemical properties such as charge, polarity and dimensions allows the obtainment of very different PLs, which can be exploited in very diverse fields of application. Moreover, the inclusions of a bioactive moiety in the PL polar head constitutes a powerful tool for the stabilization and administration of active ingredients. The use of this biocatalytic approach allows the preparation of compounds which cannot be easily obtained by classical chemical methods, by using mild and green reaction conditions. PLD is a very versatile enzyme, able to catalyze both the hydrolysis of PC to choline and phosphatidic acid (PA), and the transphosphatidylation reaction in the presence of an appropriate alcohol. The yield of production of the desired product and the ratio with the collateral PA formation is highly dependent on parameters such as the nature and concentration of the alcohol and the enzymatic source. The application of PLD catalyzed transformations for the production of a great number of PLs with important uses in medical, nutraceutical and cosmetic sectors will be discussed in this work.
Collapse
|
37
|
Smith P, Quinn PJ, Lorenz CD. Two Coexisting Membrane Structures Are Defined by Lateral and Transbilayer Interactions between Sphingomyelin and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9786-9799. [PMID: 32701297 DOI: 10.1021/acs.langmuir.0c01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure of fully hydrated bilayers composed of equimolar proportions of palmitoylsphingomyelin (PSM) and cholesterol has been examined by synchrotron X-ray powder diffraction and atomistic molecular dynamics (MD) simulations. Two coexisting bilayer structures, which are distinguished by the transbilayer phosphate-phosphate distance of coupled PSM molecules, are observed by diffraction at 37 °C. The MD simulations reveal that PSM molecules in the thicker membrane are characterized by more ordered, more extended, and less interdigitated hydrocarbon tails compared to those in the thinner membrane. Intermolecular hydrogen bonds further distinguish the two bilayer structures, and we observe the disruption of a sphingomyelin intermolecular hydrogen bond network induced by the proximity of cholesterol. Through an unsupervised clustering of interatomic distances, we show for the first time that the asymmetry of phospholipids is important in driving their interactions with cholesterol. We identify four distinct modes of interaction, two of which lead to the dehydration of cholesterol. These two modes of interaction provide the first description of precise physical mechanisms underlying the umbrella model, which itself explains how phospholipids may shield cholesterol from water. The most dehydrating mode of interaction is particular to the N-acylated fatty acid moiety of PSM and thus may explain the long-held observation that cholesterol preferentially mixes with sphingomyelins over glycerophospholipids.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London, WC2R 2LS, U.K
| | - Peter J Quinn
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | | |
Collapse
|
38
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
39
|
Abstract
Several studies have demonstrated interactions between the two leaflets in membrane bilayers and the importance of specific lipid species for such interaction and membrane function. We here discuss these investigations with a focus on the sphingolipid and cholesterol-rich lipid membrane domains called lipid rafts, including the small flask-shaped invaginations called caveolae, and the importance of such membrane structures in cell biology and cancer. We discuss the possible interactions between the very long-chain sphingolipids in the outer leaflet of the plasma membrane and the phosphatidylserine species PS 18:0/18:1 in the inner leaflet and the importance of cholesterol for such interactions. We challenge the view that lipid rafts contain a large fraction of lipids with two saturated fatty acyl groups and argue that it is important in future studies of membrane models to use asymmetric membrane bilayers with lipid species commonly found in cellular membranes. We also discuss the need for more quantitative lipidomic studies in order to understand membrane function and structure in general, and the importance of lipid rafts in biological systems. Finally, we discuss cancer-related changes in lipid rafts and lipid composition, with a special focus on changes in glycosphingolipids and the possibility of using lipid therapy for cancer treatment.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
40
|
Mostofian B, Johnson QR, Smith JC, Cheng X. Carotenoids promote lateral packing and condensation of lipid membranes. Phys Chem Chem Phys 2020; 22:12281-12293. [PMID: 32432296 DOI: 10.1039/d0cp01031f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are pigment molecules that protect biomembranes against degradation and may be involved in the formation of functional bacterial membrane microdomains. Little is known on whether different types of carotenoids have different effects on the membrane or if there is any concentration dependence of these effects. In this work, we present results from molecular dynamics simulations of phospholipid bilayers containing different amounts of either β-carotene or zeaxanthin. Both β-carotene and zeaxanthin show the ability to laterally condense the membrane lipids and reduce their inter-leaflet interactions. With increasing concentrations, both carotenoids increase the bilayer thickness and rigidity. The results reveal that carotenoids have similar effects to cholesterol on regulating the behavior of fluid-phase membranes, suggesting that they could function as sterol substitutes and confirming their potential role in the formation of functional membrane domains.
Collapse
Affiliation(s)
- Barmak Mostofian
- Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, TN 37830, USA.
| | | | | | | |
Collapse
|
41
|
Ou L, Corradi V, Tieleman DP, Liang Q. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. J Phys Chem B 2020; 124:4466-4475. [DOI: 10.1021/acs.jpcb.9b11989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luping Ou
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
42
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
43
|
Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2937-2945. [PMID: 32175748 DOI: 10.1021/acs.langmuir.9b03893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alteration of lipid raft organization manifesting as phase separation is important for cellular processes, such as signaling and trafficking. Such behaviors and dynamics of lipid membranes can be affected by external stimuli including both physical and chemical stimuli. In this study, we focused on osmotic-tension-induced phase separation. The effects of osmotic tension on the phase behaviors of vesicles consisting of dioleoylphosphocholine (DOPC)/dipalmitoylphosphocholine (DPPC)/cholesterol (Chol) were quantitatively studied at different temperatures by fluorescence microscopy. We determined the ternary phase diagrams and found that tension leads to a shift in the miscibility temperature. Cholesterol plays a key role in determining the extent of this shift. In addition, we found that osmotic tension can enhance the line tension. The physicochemical mechanism of osmotic-pressure-induced phase separation is discussed.
Collapse
Affiliation(s)
- Nichaporn Wongsirojkul
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Pakorn Opaprakasit
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| |
Collapse
|
44
|
van Hensbergen VP, Wu Y, van Sorge NM, Touqui L. Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. Trends Immunol 2020; 41:313-326. [PMID: 32151494 DOI: 10.1016/j.it.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
The enzyme type IIA secreted phospholipase A2 (sPLA2-IIA) is crucial for mammalian innate host defense against bacterial pathogens. Most studies have investigated the role of sPLA2-IIA in systemic bacterial infections, identifying molecular pathways of bacterial resistance against sPLA2-IIA-mediated killing, and providing insight into sPLA2-IIA mechanisms of action. Sensitization of (antibiotic-resistant) bacteria to sPLA2-IIA action by blocking bacterial resistance or by applying sPLA2-IIA to treat bacterial infections might represent a therapeutic option in the future. Because sPLA2-IIA is highly expressed at mucosal barriers, we also discuss how sPLA2-IIA is likely to be an important driver of microbiome composition; we anticipate that future research in this area may bring new insights into the role of sPLA2-IIA in health and disease.
Collapse
Affiliation(s)
- Vincent P van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yongzheng Wu
- Unité de Biologie Cellulaire de l'infection Microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, département Santé Globale; Pasteur Institute, Paris, France.
| |
Collapse
|
45
|
Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. NANOSCALE 2020; 12:4101-4109. [PMID: 32022059 DOI: 10.1039/c9nr09226a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
46
|
Watkins EB, Majewski J, Chi EY, Gao H, Florent JC, Johannes L. Shiga Toxin Induces Lipid Compression: A Mechanism for Generating Membrane Curvature. NANO LETTERS 2019; 19:7365-7369. [PMID: 31538793 DOI: 10.1021/acs.nanolett.9b03001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomembranes are hard to compress laterally, and membrane area compressibility has not been associated with biological processes. Using X-ray surface scattering, we observed that bacterial Shiga toxin compresses lipid packing in a gel phase monolayer upon binding to its cellular receptor, the glycolipid Gb3. This toxin-induced reorganization of lipid packing reached beyond the immediate membrane patch that the protein was bound to, and linkers separating the Gb3 carbohydrate and ceramide moieties modulated the toxin's capacity to compress the membrane. Within a natural membrane, asymmetric compression of the toxin-bound leaflet could provide a mechanism to initiate narrow membrane bending, as observed upon toxin entry into cells. Such lipid compression and long-range membrane reorganization by glycolipid-binding proteins represent novel concepts in membrane biology that have direct implications for the construction of endocytic pits in clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jaroslaw Majewski
- Theoretical Biology and Biophysics , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Division of Molecular and Cellular Biosciences , National Science Foundation , Alexandria , Virginia 22314 , United States
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eva Y Chi
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Haifei Gao
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| | - Jean-Claude Florent
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| |
Collapse
|
47
|
Zhang S, Lin X. Lipid Acyl Chain cis Double Bond Position Modulates Membrane Domain Registration/Anti-Registration. J Am Chem Soc 2019; 141:15884-15890. [DOI: 10.1021/jacs.9b06977] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Siya Zhang
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
48
|
Enoki TA, Feigenson GW. Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophys J 2019; 117:1037-1050. [PMID: 31493862 DOI: 10.1016/j.bpj.2019.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
49
|
Role of Transmembrane Proteins for Phase Separation and Domain Registration in Asymmetric Lipid Bilayers. Biomolecules 2019; 9:biom9080303. [PMID: 31349669 PMCID: PMC6723173 DOI: 10.3390/biom9080303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that the formation and spatial correlation of lipid domains in the two apposed leaflets of a bilayer are influenced by weak lipid–lipid interactions across the bilayer’s midplane. Transmembrane proteins span through both leaflets and thus offer an alternative domain coupling mechanism. Using a mean-field approximation of a simple bilayer-type lattice model, with two two-dimensional lattices stacked one on top of the other, we explore the role of this “structural” inter-leaflet coupling for the ability of a lipid membrane to phase separate and form spatially correlated domains. We present calculated phase diagrams for various effective lipid–lipid and lipid–protein interaction strengths in membranes that contain a binary lipid mixture in each leaflet plus a small amount of added transmembrane proteins. The influence of the transmembrane nature of the proteins is assessed by a comparison with “peripheral” proteins, which result from the separation of one single integral protein into two independent units that are no longer structurally connected across the bilayer. We demonstrate that the ability of membrane-spanning proteins to facilitate domain formation requires sufficiently strong lipid–protein interactions. Weak lipid–protein interactions generally tend to inhibit phase separation in a similar manner for transmembrane as for peripheral proteins.
Collapse
|
50
|
Skotland T, Sandvig K. The role of PS 18:0/18:1 in membrane function. Nat Commun 2019; 10:2752. [PMID: 31227693 PMCID: PMC6588574 DOI: 10.1038/s41467-019-10711-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
Various studies have demonstrated that the two leaflets of cellular membranes interact, potentially through so-called interdigitation between the fatty acyl groups. While the molecular mechanism underlying interleaflet coupling remains to be fully understood, recent results suggest interactions between the very-long-chain sphingolipids in the outer leaflet, and phosphatidylserine PS18:0/18:1 in the inner leaflet, and an important role for cholesterol for these interactions. Here we review the evidence that cross-linking of sphingolipids may result in clustering of phosphatidylserine and transfer of signals to the cytosol. Although much remains to be uncovered, the molecular properties and abundance of PS 18:0/18:1 suggest a unique role for this lipid. There are several lines of evidence for interactions between the two membrane leaflets in cells. In this review the authors discuss the transmembrane coupling of lipids, the involvement of phosphatidyl serine species PS 18:0/18:1, and their importance for various cellular processes.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|