1
|
Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Luo
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| | - Xian Lin
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Sericultural & Agri‐Food Research Institute Guangdong China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale ‘A. Avogadro’ Novara Italy
| | - Charles Brennan
- Faculty of Agriculture and Life Sciences Lincoln University Christchurch New Zealand
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
2
|
Malaguti M, Cardenia V, Rodriguez-Estrada MT, Hrelia S. Nutraceuticals and physical activity: Their role on oxysterols-mediated neurodegeneration. J Steroid Biochem Mol Biol 2019; 193:105430. [PMID: 31325497 DOI: 10.1016/j.jsbmb.2019.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
Over the past few years, the contribution of oxysterols to the onset and development of some of the major neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) has been scientifically asserted, being mainly related to altered brain cholesterol homeostasis. To counteract oxysterol induced inflammation at neuronal level, one possible intervention approach is the administration of some nutrients and/or plant secondary metabolites. On the other hand, the pleiotropic beneficial effects of physical activity seem to play an important role on prevention and counteraction of neurodegenerative diseases, through the modulation of oxysterol homeostasis and the prevention of demyelination. The present review provides a picture of the promising role of nutraceuticals and physical activity on oxysterol-mediated neurodegeneration, pointing out also the different in vitro and in vivo aspects that need to be further investigated for a better understanding of the association of these three counterparts and their overall effect on people at increased risk for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy.
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy
| |
Collapse
|
3
|
Xiao W, Fu Q, Zhao Y, Zhang L, Yue Q, Hai L, Guo L, Wu Y. Ascorbic acid-modified brain-specific liposomes drug delivery system with "lock-in" function. Chem Phys Lipids 2019; 224:104727. [PMID: 30660746 DOI: 10.1016/j.chemphyslip.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
Abstract
In this study, a novel brain targeting ascorbic acid (AA) derivative with "lock-in" function was designed and synthesized as a liposome ligand to prepare novel liposomes to achieve the effective delivery of drug formulations to brain via glucose transporter 1 (GLUT1) and the Na+-dependent vitamin C transporter (SVCT2). The liposome was prepared and characterized in terms of the particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cell cytotoxicity. The preliminary evaluation in vivo demonstrated that the AA-thiamine disulfide system (TDS)-coated liposome had an improved targeting ability and significantly increased the brain concentration of docetaxel (DTX) as compared to the naked docetaxel, the non-coated and the AA-coated liposomes. The relative uptake efficiency and concentration efficiency were enhanced by 3.24- and 5.62-fold compared to that of the naked docetaxel, respectively. Both distribution data and pharmacokinetic parameters suggested that the ascorbic acid thiamine disulfide delivery system was a promising carrier to enhance central nervous system (CNS) drug's delivery ability into brain.
Collapse
Affiliation(s)
- Wenjiao Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Qiuyi Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Qiming Yue
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
The effect of electronic-cigarettes aerosol on rat brain lipid profile. Biochimie 2018; 153:99-108. [PMID: 30077815 DOI: 10.1016/j.biochi.2018.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The electronic cigarettes (e-cigarettes, e-cigs) have become the most sought-after alternative to the traditional cigarettes, partly due to the widespread perception of safety. However, the high temperature reached by e-cig solutions can generate toxic compounds, some of which are listed as known human carcinogens. To evaluate the impact of e-cig aerosol on rat brain lipid profile, twenty male Sprague Dawley rats were exposed to 11 cycles/day (E-cig group), to consume 1 mL/day of e-liquid, for 5 days/week up to 8 weeks. Ten rats were sacrificed after 4 weeks (4w) and ten at the end of treatment (8w). The composition of total fatty acids, sterols and oxysterols of the lipid fraction of rat brains, was analyzed. The results of the E-cig group were compared with those of the control group (not exposed). After 8 weeks, the saturated fatty acids significantly raised up to 7.35 mg/g tissue, whereas polyunsaturated fatty acids decreased reaching 3.17 mg/g. The e-cig vaping increased both palmitic (3.43 mg/g) and stearic acids (3.82 mg/g), while a significant decrement of arachidonic (1.32 mg/g) and docosahexaenoic acids (1.00 mg/g) was found. Atherogenic (0.5) and thrombogenic (1.12) indices also increased in 8w treated animals. The e-cig aerosol significantly impacted the cholesterol homeostasis, since the latter at 8w (21.57 mg/g) was significantly lower than control (24.56 mg/g); moreover, a significant increase of 7-dehydrocholesterol (1.87 mg/g) was also denoted in e-cig group. The e-cig aerosol also reduced the oxysterol formation (19.55 μg/g) after 4 weeks of exposure, except for triol and 5α,6α-epoxycholesterol (α-EC). The principal component analysis (PCA) separated all E-cig from control groups, evidencing that oxysterols (except triol and 24(S)-hydroxycholesterol (24(S)-HC)) were inversely correlated to 7-DHC and TI. The present research revealed that e-cigs aerosol affected the lipid and cholesterol homeostasis in rat brain, which could contribute to the new occurrence of some neurodegenerative diseases.
Collapse
|
5
|
Vivarelli F, Canistro D, Babot Marquillas C, Cirillo S, De Nicola GR, Iori R, Biagi G, Pinna C, Gentilini F, Pozzo L, Longo V, Paolini M. The combined effect of Sango sprout juice and caloric restriction on metabolic disorders and gut microbiota composition in an obesity model. Int J Food Sci Nutr 2017; 69:192-204. [PMID: 28770644 DOI: 10.1080/09637486.2017.1350940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The main purpose of this study was to compare the benefits of SSJ supplementation in obese rats with those achieved only by switching the alimentary regimen from high-fat (HFD) to the regular one (RD) in liver, ileum and prostate. Furthermore, changings in caecal chime microbiota were investigated. SSJ was administered to rats in combination with a RD (HFD-RD + SSJ). The switch from HFD to RD led to a weight loss of almost 9.8 g, and the total cholesterol was found to be significantly lower. In the HFD-RD + SSJ group, all values were improved compared with the HFD control, and the weight decrement was higher (-23.29 g) with respect to HFD-RD. HFD led to a widespread increment of oxidative stress (OS) markers in liver, ileum and prostate. SSJ has shown to improve the results achieved by the suspension of HFD and it has proven effective wherever the only switch in diet regimen failed.
Collapse
Affiliation(s)
- Fabio Vivarelli
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Donatella Canistro
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Clara Babot Marquillas
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Silvia Cirillo
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Gina R De Nicola
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Renato Iori
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Giacomo Biagi
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Carlo Pinna
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Fabio Gentilini
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Luisa Pozzo
- d Institute of Agricultural Biology and Biotechnology , CNR , Pisa , Italy
| | - Vincenzo Longo
- d Institute of Agricultural Biology and Biotechnology , CNR , Pisa , Italy
| | - Moreno Paolini
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| |
Collapse
|