1
|
Duewell BR, Wilson NE, Bailey GM, Peabody SE, Hansen SD. Molecular dissection of PI3Kβ synergistic activation by receptor tyrosine kinases, GβGγ, and Rho-family GTPases. eLife 2024; 12:RP88991. [PMID: 38713746 PMCID: PMC11076043 DOI: 10.7554/elife.88991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.
Collapse
Affiliation(s)
- Benjamin R Duewell
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Naomi E Wilson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gabriela M Bailey
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Sarah E Peabody
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
2
|
Tesei G, Hsiao YW, Dabkowska A, Grönberg G, Yanez Arteta M, Ulkoski D, Bray DJ, Trulsson M, Ulander J, Lund M, Lindfors L. Lipid shape and packing are key for optimal design of pH-sensitive mRNA lipid nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2311700120. [PMID: 38175863 PMCID: PMC10786277 DOI: 10.1073/pnas.2311700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
The ionizable-lipid component of RNA-containing nanoparticles controls the pH-dependent behavior necessary for an efficient delivery of the cargo-the so-called endosomal escape. However, it is still an empirical exercise to identify optimally performing lipids. Here, we study two well-known ionizable lipids, DLin-MC3-DMA and DLin-DMA using a combination of experiments, multiscale computer simulations, and electrostatic theory. All-atom molecular dynamics simulations, and experimentally measured polar headgroup pKa values, are used to develop a coarse-grained representation of the lipids, which enables the investigation of the pH-dependent behavior of lipid nanoparticles (LNPs) through Monte Carlo simulations, in the absence and presence of RNA molecules. Our results show that the charge state of the lipids is determined by the interplay between lipid shape and headgroup chemistry, providing an explanation for the similar pH-dependent ionization state observed for lipids with headgroup pKa values about one-pH-unit apart. The pH dependence of lipid ionization is significantly influenced by the presence of RNA, whereby charge neutrality is achieved by imparting a finite and constant charge per lipid at intermediate pH values. The simulation results are experimentally supported by measurements of α-carbon 13C-NMR chemical shifts for eGFP mRNA LNPs of both DLin-MC3-DMA and DLin-DMA at various pH conditions. Further, we evaluate the applicability of a mean-field Poisson-Boltzmann theory to capture these phenomena.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, CopenhagenDK-2200, Denmark
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Ya-Wen Hsiao
- The Hartree Centre, Science and Technology Facilities Council (STFC) Daresbury Laboratory, WarringtonWA4 4AD, United Kingdom
| | - Aleksandra Dabkowska
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Gunnar Grönberg
- Medicinal Chemistry, Early Respiratory & Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - David J. Bray
- The Hartree Centre, Science and Technology Facilities Council (STFC) Daresbury Laboratory, WarringtonWA4 4AD, United Kingdom
| | - Martin Trulsson
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Johan Ulander
- Data Science and Modelling, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Mikael Lund
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| |
Collapse
|
3
|
Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-Responsive Molecular Release from Cubosomes Using Swell-Squeeze Lattice Control. J Am Chem Soc 2022; 144:19532-19541. [PMID: 36222426 DOI: 10.1021/jacs.2c08583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive materials are crucial to advance controlled delivery systems for drugs and catalysts. Lyotropic liquid crystals (LLCs) have well-defined internal structures suitable to entrap small molecules and can be broken up into low-viscosity dispersions, aiding their application as delivery systems. In this work, we demonstrate the first example of light-responsive cubic LLC dispersions, or cubosomes, using photoswitchable amphiphiles to enable external control over the LLC structure and subsequent on-demand release of entrapped guest molecules. Azobenzene photosurfactants (AzoPS), containing a neutral tetraethylene glycol head group and azobenzene-alkyl tail, are combined (from 10-30 wt %) into monoolein-water systems to create LLC phases. Homogenization of the bulk LLC forms dispersions of particles, ∼200 nm in diameter with internal bicontinuous primitive cubic phases, as seen using small-angle X-ray scattering and cryo-transmission electron microscopy. Notably, increasing the AzoPS concentration leads to swelling of the cubic lattice, offering a method to tune the internal nanoscale structure. Upon UV irradiation, AzoPS within the cubosomes isomerizes within seconds, which in turn leads to squeezing of the cubic lattice and a decrease in the lattice parameter. This squeeze mechanism was successfully harnessed to enable phototriggerable release of trapped Nile Red guest molecules from the cubosome structure in minutes. The ability to control the internal structure of LLC dispersions using light, and the dramatic effect this has on the retention of entrapped molecules, suggests that these systems may have huge potential for the next-generation of nanodelivery.
Collapse
Affiliation(s)
- Beatrice E Jones
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Elaine A Kelly
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
4
|
Valls A, Altava B, Aseyev V, García-Verdugo E, Luis SV. Imidazolium based gemini amphiphiles derived from L-valine. Structural elements and surfactant properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Surface Ligand Valency and Immunoliposome Binding: when More Is Not Always Better. Pharm Res 2021; 38:1593-1600. [PMID: 34463936 DOI: 10.1007/s11095-021-03092-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE Nano-drug delivery systems are designed to contain surface ligands including antibodies for "active targeting". The number of ligands on each nanoparticle, known as the valency, is considered a critical determinant of the "targeting" property. We sought to understand the correlation between valency and binding properties using antibody conjugated liposomes, i.e. immunoliposomes (ILs), as the model. METHODS Anti-CD3 Fab containing a terminal cysteine residue were conjugated to DSPE-PEG-maleimide and incubated with preformed liposomes at 60°C. The un-incorporated antibodies were removed and the obtained ILs were characterized to contain in average 2-22 copies of anti-CD3 Fabs per liposome. The Biolayer Interferometry (BLI) probe surface was coated with various densities of CD3 epsilon&delta heterodimer (CD3D/E) to imitate different CD3 expression levels on target cells. The inference wavelength shifts upon anti-CD3 liposome binding were monitored and analyzed. RESULTS The data indicated ILs may bind either monovalently or multivalently, determined mainly by the surface ligand density rather than the ILs antibody valency. The ILs valency indeed correlated with the dissociation rate constant (Koff), but not with the association rate constant (Kon). Their binding capabilities also did not necessarily increase with the surface anti-CD3 valency. CONCLUSION We proposed a model for understanding the binding properties of ILs with different ligand valencies. The binding mode may change when the targeted surfaces had different antigen densities. The model should be important for the designing and optimization of active targeting drug delivery systems to fit different applications.
Collapse
|
6
|
Vallooran JJ, Duss M, Ansorge P, Mezzenga R, Landau EM. Stereochemical Purity Can Induce a New Crystalline Mesophase in Phytantriol Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9132-9141. [PMID: 32654490 DOI: 10.1021/acs.langmuir.0c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of stereochemical purity of lipids on their self-assembly behavior is critical for establishing their true phase behavior from their commercial counterparts, which often contains stereoisomeric mixtures and other impurities. Here, stereochemically pure phytantriol (PT), (3,7,11,15-tetramethylhexadecane-1,2,3-triol) was synthesized from the natural trans-phytol and its thermotropic and lyotropic phase behavior in water investigated by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and differential scanning calorimetry (DSC). These chemically pure lipids contain two chiral centers at the hydrophilic head group region and two chiral centers at the lipophilic tail region, allowing us to address the question of whether the molecular stereochemistry is related to the macroscopic phase behavior of phytantriol. In contrast to its commercial stereoisomeric mixtures, which form an isotropic micellar phase, neat (2S,3S,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (S,S-PT) shows a smectic lamellar phase at room temperature, whereas (2R,3R,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (R,R-PT) forms solid crystals. The lyotropic phase behavior of R,R-PT appears to be identical to that of the previously reported commercial stereoisomeric PT mixtures. In contrast, S,S-PT exhibits a different phase behavior. A lamellar crystalline phase (Lc) is formed instead of an isotropic micellar phase at a low water content, which also coexisted with other phases at low temperature. Subtle change in the shape of the diastereomers leads to variable steric interactions and subsequently affects the packing of the lipids at the molecular level, thereby influencing its self-assembling behavior. Finally, lipidic cubic phase crystallization of the membrane protein bacteriorhodopsin yielded a larger number of microcrystals with a higher average crystal length from S,S-PT than from commercial PT, suggesting faster nucleation.
Collapse
Affiliation(s)
- Jijo J Vallooran
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Duss
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Salvador-Castell M, Demé B, Oger P, Peters J. Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature. Int J Mol Sci 2020; 21:ijms21051816. [PMID: 32155764 PMCID: PMC7084678 DOI: 10.3390/ijms21051816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Archaea, the most extremophilic domain of life, contain ether and branched lipids which provide extraordinary bilayer properties. We determined the structural characteristics of diether archaeal-like phospholipids as functions of hydration and temperature by neutron diffraction. Hydration and temperature are both crucial parameters for the self-assembly and physicochemical properties of lipid bilayers. In this study, we detected non-lamellar phases of archaeal-like lipids at low hydration levels, and lamellar phases at levels of 90% relative humidity or more exclusively. Moreover, at 90% relative humidity, a phase transition between two lamellar phases was discernible. At full hydration, lamellar phases were present up to 70ᵒC and no phase transition was observed within the temperature range studied (from 25 °C to 70 °C). In addition, we determined the neutron scattering length density and the bilayer's structural parameters from different hydration and temperature conditions. At the highest levels of hydration, the system exhibited rearrangements on its corresponding hydrophobic region. Furthermore, the water uptake of the lipids examined was remarkably high. We discuss the effect of ether linkages and branched lipids on the exceptional characteristics of archaeal phospholipids.
Collapse
Affiliation(s)
| | - Bruno Demé
- Institut Laue Langevin, 38000 Grenoble, France;
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS, UMR 5240, 69211 Villeurbanne, France;
- Correspondence: (P.O.); (J.P.)
| | - Judith Peters
- Institut Laue Langevin, 38000 Grenoble, France;
- Université Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France
- Correspondence: (P.O.); (J.P.)
| |
Collapse
|
8
|
Lotfallah AH, Isabel Burguete M, Alfonso I, Luis SV. Synthesis of second-generation self-assembling Gemini Amphiphilic Pseudopeptides. J Colloid Interface Sci 2020; 564:52-64. [DOI: 10.1016/j.jcis.2019.12.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
|
9
|
Salvador-Castell M, Brooks NJ, Peters J, Oger P. Induction of non-lamellar phases in archaeal lipids at high temperature and high hydrostatic pressure by apolar polyisoprenoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183130. [PMID: 31734311 DOI: 10.1016/j.bbamem.2019.183130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/01/2022]
Abstract
It is now well established that cell membranes are much more than a barrier that separate the cytoplasm from the outside world. Regarding membrane's lipids and their self-assembling, the system is highly complex, for example, the cell membrane needs to adopt different curvatures to be functional. This is possible thanks to the presence of non-lamellar-forming lipids, which tend to curve the membrane. Here, we present the effect of squalane, an apolar isoprenoid molecule, on an archaea-like lipid membrane. The presence of this molecule provokes negative membrane curvature and forces lipids to self-assemble under inverted cubic and inverted hexagonal phases. Such non-lamellar phases are highly stable under a broad range of external extreme conditions, e.g. temperatures and high hydrostatic pressures, confirming that such apolar lipids could be included in the architecture of membranes arising from cells living under extreme environments.
Collapse
Affiliation(s)
| | - Nicholas J Brooks
- Imperial College London, South Kensington Campus, London SW7 2AZ, England, United Kingdom of Great Britain and Northern Ireland
| | - Judith Peters
- Université Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France; Institut Laue Langevin, 38000 Grenoble, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS, UMR 5240, 69211 Villeurbanne, France.
| |
Collapse
|