1
|
Chitas R, Fonseca DR, Parreira P, Martins MCL. Targeted nanotherapeutics for the treatment of Helicobacter pylori infection. J Biomed Sci 2024; 31:78. [PMID: 39128983 DOI: 10.1186/s12929-024-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.
Collapse
Affiliation(s)
- Rute Chitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Porto, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Li J, Peng F, Huang H, Xu X, Guan Q, Xie M, Xiong T. Characterization, mechanism and in vivo validation of Helicobacter pylori antagonism by probiotics screened from infants' feces and oral cavity. Food Funct 2024; 15:1170-1190. [PMID: 38206113 DOI: 10.1039/d3fo04592g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.
Collapse
Affiliation(s)
- Junyi Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Hui Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
3
|
Cao Z, Zhao L, Chen M, Shi Z, Liu L. Molecular mechanism of calcitriol enhances membrane water permeability. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159430. [PMID: 37979445 DOI: 10.1016/j.bbalip.2023.159430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Helicobacter pylori (H. pylori) exhibits a unique membrane lipid composition, including dimyristoyl phosphatidylethanolamine (DMPE) and cholesterol, unlike other Gram-negative bacteria. Calcitriol has antimicrobial activity against H. pylori, but cholesterol enhances antibiotics resistance in H. pylori. This study explored the changes in membrane structure and the molecular mechanisms of cholesterol/calcitriol translocation using well-tempered metadynamics (WT-MetaD) simulations and microsecond conventional molecular dynamics (CMD) simulations. Calcitriol facilitated water transport across the membrane, while cholesterol had the opposite effect. The differing effects might result from the tail 25-hydroxyl group and a wider range of orientations of calcitriol in the DMPE/dimyristoyl phosphatidylglycerol (DMPG) (3:1) membrane. Calcitriol moves across the bilayer center without changing its orientation along the membrane Z-axis, becomes parallel to the membrane surface at the membrane-water interface, and then rotates approximately 90° in this interface. The translocation mechanism of calcitriol is quite different from the flip-flop of cholesterol. Moreover, calcitriol crossed from one layer to another more easily than cholesterol, causing successive perturbations to the hydrophobic core and increasing water permeation. These results improve our understanding of the relationship between cholesterol/calcitriol concentrations and the lipid bilayer structure and the role of lipid composition in water permeation.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Mingcui Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhihong Shi
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
4
|
Wanibuchi K, Hosoda K, Amgalanbaatar A, Ihara M, Takezawa M, Sakai Y, Masui H, Shoji M, Hayashi S, Shimomura H. Aspects for development of novel antibacterial medicines using a vitamin D 3 decomposition product in Helicobacter pylori infection. J Antibiot (Tokyo) 2023; 76:665-672. [PMID: 37658133 DOI: 10.1038/s41429-023-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
A previous study by our group demonstrated that a vitamin D3 decomposition product (VDP1) acts as the selective bactericidal substance on Helicobacter pylori. VDP1 is an indene compound modified with a carbonyl and an alkyl. The alkyl of VDP1 turned out to be a mandatory structure to exert effective bactericidal action on H. pylori. Meanwhile, it still remains to be clarified as to how influence the alteration of the carbonyl in VDP1 has on the anti-H. pylori activity. In this study, we synthesized novel VDP1 derivatives that replaced the carbonyl of VDP1 by various functional groups and investigated the antibacterial action of the VDP1 derivatives on H. pylori. VDP1 derivatives retaining either a hydroxy (VD3-1) or an acetic ester (VD3-3) exhibited more effective bactericidal action to H. pylori than VDP1. The replacement of the carbonyl of VDP1 by either an allyl acetate (VD3-2) or an acrylic acid (VD3-5) provided almost no change to the anti-H. pylori activity. Apart from this, an isomer of VDP1 (VD3-4) slightly improved anti-H. pylori activity of VDP1. Meanwhile, the replacement of the carbonyl of VDP1 by a methyl acrylate (VD3-6) attenuated the anti-H. pylori activity. As with VDP1, its derivatives also were suggested to exert the anti-H. pylori action through the interaction with myristic acid side chains of dimyristoyl-phosphatidylethanolamine, a characteristic membrane lipid constituent of this pathogen. These results indicate that it is capable of developing specific antibacterial medicines for H. pylori targeting the biomembranal dimyristoyl-phosphatidylethanolamine using VDP1 as the fundamental structure.
Collapse
Affiliation(s)
- Kiyofumi Wanibuchi
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Kouichi Hosoda
- Nikon Cell Innovation Co., Ltd., 2-4-10, Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Avarzed Amgalanbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, 14210, Zoing street, Sukhbaatar District, Ulaanbaatar, 14210, Mongolia
| | - Masato Ihara
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Motoki Takezawa
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Yuki Sakai
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Mitsuru Shoji
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Shunji Hayashi
- Department of Microbiology, School of Medicine, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| | - Hirofumi Shimomura
- Public Health Center of Uki, Kumamoto Prefecture Office, 400-1, Kugu, Matsubase-machi, Uki-shi, Kumamoto, 869-0532, Japan.
| |
Collapse
|
5
|
Săsăran MO, Mărginean CO, Lupu A, Koller AM. Vitamin D and Its Association with H. pylori Prevalence and Eradication: A Comprehensive Review. Nutrients 2023; 15:3549. [PMID: 37630738 PMCID: PMC10459106 DOI: 10.3390/nu15163549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Taking into account previous data that sustain a relationship between vitamin D deficiency and higher H. pylori infection positivity rates, this review aims to assess the influence of vitamin D deficiency and/or insufficiency upon the prevalence of H. pylori infection and its eradication success. Three major databases were searched for articles that analyzed a relationship between vitamin D status and H. pylori infection. The literature search retrieved a total of 37 reports, after the article selection process. Hypovitaminosis D emerged as a potential risk factor for H. pylori infection, given the higher prevalence of vitamin D deficiency and/or insufficiency among H. pylori-positive subjects. Furthermore, the same type of micronutrient deficiency has been directly linked to H. pylori eradication failure. An inverse linear relationship between vitamin D status and gastric cancer risk exists, but the additional involvement of H. pylori in this correlation is still in question. The potential benefit of oral supplements in enhancing the success of classical therapeutic regimens of H. pylori still requires future research. Future population-based studies from larger geographical areas are warranted to address this subject in more depth.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics 1, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Ancuta Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No. 16, 700115 Iași, Romania;
| | - Ana Maria Koller
- Clinics of Pediatrics, Emergency County Clinical Hospital, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania;
| |
Collapse
|
6
|
Hosoda K, Wanibuchi K, Amgalanbaatar A, Shoji M, Hayashi S, Shimomura H. A novel role of catalase in cholesterol uptake of Helicobacter pylori. Steroids 2023; 191:109158. [PMID: 36574870 DOI: 10.1016/j.steroids.2022.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori infection is known to be a significant risk factor for the development of gastric cancers in humans. This pathogen exhibits unique biological characteristics in membrane lipid composition. Specifically, H. pylori incorporates exogenous cholesterol into biomembranes and uses cholesterol as the membrane lipid constituents. A previous study by our group demonstrated that phosphatidylethanolamine of H. pylori functions as the cholesterol-binding lipid. It is, however, unclear whether H. pylori is equipped with protein molecules involved in the cholesterol uptake. We, therefore, examined H. pylori proteins that tightly bind to cholesterol. As a consequence, H. pylori catalase (KatA) turned out to be a candidate of the cholesterol uptake-associated protein. In addition, an H. pylori mutant strain that expresses KatA protein lacking catalase activity was significantly lower in total cholesterol contents than the wild-type H. pylori strain. The putative amino acid sequence of KatA found out to contain a number of the cholesterol recognition/interaction amino acid consensus sequence domains (CRAC and CARC domains). These results suggest that H. pylori KatA with normal folding conformation acts as the cholesterol-binding or -storage protein.
Collapse
Affiliation(s)
- Kouichi Hosoda
- Nikon Cell Innovation Co., Ltd., 2-4-10, Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Kiyofumi Wanibuchi
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa 245-0066, Japan
| | - Avarzed Amgalanbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, 14210, Zoing Street, Sukhbaatar District, Ulaanbaatar 14210, Mongolia
| | - Mitsuru Shoji
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa 245-0066, Japan
| | - Shunji Hayashi
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan
| | - Hirofumi Shimomura
- Public Health Center of Uki, Kumamoto Prefecture Office, 400-1, Kugu, Matsubase-machi, Uki-shi, Kumamoto 869-0532, Japan.
| |
Collapse
|
7
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
A short review, effect of dimethyl-β-cyclodextrin on the interaction between Helicobacter pylori and steroidal compounds. Heliyon 2021; 7:e06767. [PMID: 33912723 PMCID: PMC8065201 DOI: 10.1016/j.heliyon.2021.e06767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
The 2,6-di-O-methyl-β-cyclodextrin (dMβCD) is an amphiphilic annular compound consisting of seven dimethyl-glucose molecules. This compound is well known as a solubilizer of lipophilic compounds. Especially, dMβCD extracts cholesterol from the plasma membrane of mammalian cells and releases the cholesterol to the aqueous solution. The experimental use of dMβCD, therefore, serves to investigate the role of cholesterol in the mammalian cell membrane. It is, however, unclear as to how dMβCD extracts cholesterol incorporated into the glycerophospholipid biomembrane. Meanwhile, dMβCD acts as a beneficial compound for Helicobacter pylori and is used as the standard component for supporting the growth of this bacterium in the serum-free culture. However, the detailed mechanism of dMβCD for supporting the growth of H. pylori is still to be clarified. H. pylori is a Gram-negative microaerophilic bacillus recognized as a pathogen concerned with gastrointestinal diseases in human. Previous studies by our group have successfully obtained the H. pylori strains culturable without dMβCD and demonstrated the distinct effects of dMβCD on the interaction between H. pylori and exogenous steroidal compounds. For instance, dMβCD promotes and inhibits the absorption of cholesterol and several steroidal compounds respectively into the biomembranes of H. pylori. In this study we summarized behaviors of dMβCD toward steroidal compounds relevant to H. pylori.
Collapse
|
9
|
Shafrir A, Shauly-Aharonov M, Katz LH, Paltiel O, Pickman Y, Ackerman Z. The Association between Serum Vitamin D Levels and Helicobacter pylori Presence and Eradication. Nutrients 2021; 13:nu13010278. [PMID: 33478000 PMCID: PMC7835846 DOI: 10.3390/nu13010278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The success of Helicobacter pylori (H. pylori) eradication depends on several host and treatment factors. Serum vitamin D levels may be associated with H. pylori infection and eradication rates. We investigated the association between vitamin D and H. pylori infection and eradication, using a large electronic database based on medical records from a population-based health maintenance organization. Methods: Data regarding adults who underwent H. pylori testing and had vitamin D measurements within one month of H. pylori testing were collected. H. pylori infection was ascertained using urea breath or stool antigen tests. A negative H. pylori test following a positive result implied eradication. Multivariate regression models were constructed to assess associations between H. pylori infection, eradication, and vitamin D. Results: Among 150,483 members who underwent H. pylori testing from 2009 to 2018, 27,077 (18%) had vitamin D measurements. Vitamin D levels were inversely associated with H. pylori infection, p < 0.001. The odds of a positive H. pylori test were 31% higher among patients with vitamin D levels <20 ng/mL, compared with those with levels ≥20 ng/mL (OR 1.31, 99% CI 1.22–1.4, p < 0.001). Purchase of vitamin D supplements was associated with a negative subsequent H. pylori test (p < 0.001). Mean vitamin D levels were moderately higher in those with successful vs. failed H. pylori eradication (19.34 ± 9.55 vs. 18.64 ± 9.61, p < 0.001). Conclusions: Vitamin D levels are associated with H. pylori infection. Increased vitamin D levels are associated with successful H. pylori eradication. Vitamin D may have a role in H. pylori eradication.
Collapse
Affiliation(s)
- Asher Shafrir
- Division of Medicine, Meuhedet Health Services, Tel Aviv 6203854, Israel
- Hadassah Medical Center, The Department of Gastroenterology, Faculty of Medicine, Ein Karem Campus, Hebrew University of Jerusalem, P.O. Box 12249, Jerusalem 9112102, Israel;
- Correspondence: ; Tel.: +972-2677-7547; Fax: +972-2642-0338
| | - Michal Shauly-Aharonov
- The Jerusalem College of Technology, P.O. Box 16031, Jerusalem 91160, Israel;
- Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Lior H. Katz
- Hadassah Medical Center, The Department of Gastroenterology, Faculty of Medicine, Ein Karem Campus, Hebrew University of Jerusalem, P.O. Box 12249, Jerusalem 9112102, Israel;
| | - Ora Paltiel
- Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Hadassah Medical Center, Department of Hematology, Faculty of Medicine, Ein Karem Campus, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | | | - Zvi Ackerman
- Hadassah Medical Center, Department of Medicine, Faculty of Medicine, Mount Scopus Campus, Hebrew University of Jerusalem, P.O. Box 24035, Jerusalem 91240, Israel;
| |
Collapse
|