1
|
Abd El-Aal AAA, Jayakumar FA, Reginald K. Dual-action potential of cationic cryptides against infections and cancers. Drug Discov Today 2023; 28:103764. [PMID: 37689179 DOI: 10.1016/j.drudis.2023.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cryptides are a subfamily of bioactive peptides embedded latently in their parent proteins and have multiple biological functions. Cationic cryptides could be used as modern drugs in both infectious diseases and cancers because their mechanism of action is less likely to be affected by genetic mutations in the treated cells, therefore addressing a current unmet need in these two areas of medicine. In this review, we present the current understanding of cryptides, methods to mine them sustainably using available online databases and prediction tools, with a particular focus on their antimicrobial and anticancer potential, and their potential applicability in a clinical setting.
Collapse
Affiliation(s)
- Amr A A Abd El-Aal
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia
| | - Fairen A Jayakumar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
2
|
Li Y, Ye Y, Li W, Liu X, Zhao Y, Jiang Q, Che X. Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense. Animals (Basel) 2023; 13:2884. [PMID: 37760284 PMCID: PMC10525465 DOI: 10.3390/ani13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China's shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‱ for 6 weeks. The gills from the control (0‱) and isotonic groups (14‱) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‱. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| |
Collapse
|
3
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
4
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
5
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
6
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
7
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
8
|
de Siqueira KA, Liotti RG, de Sousa JR, Vendruscullo SJ, de Souza GB, de Vasconcelos LG, Januário AH, de Oliveira Mendes TA, Soares MA. Streptomyces griseocarneus R132 expresses antimicrobial genes and produces metabolites that modulate Galleria mellonella immune system. 3 Biotech 2021; 11:396. [PMID: 34422537 DOI: 10.1007/s13205-021-02942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
Actinobacteria is a phylum composed of aerobic, Gram-positive, and filamentous bacteria with a broad spectrum of biological activity, including antioxidant, antitumor, and antibiotic. The crude extract of Streptomyces griseocarneus R132 was fractionated on a C18 silica column and the isolated compound was identified by 1H and 13C nuclear magnetic resonance as 3-(phenylprop-2-enoic acid), also known as trans-cinnamic acid. Antimicrobial activity against human pathogens was assayed in vitro (disk-diffusion qualitative test) and in vivo using Galleria mellonella larvae (RT-qPCR). The methanol fractions 132-F30%, 132-F50%, 132-F70%, and 132-F100% inhibited the Escherichia coli (ATCC 25922) and Staphylococcus aureus (MRSA) growth in vitro the most effectively. Compared with the untreated control (60-80% of larvae death), the fractions and isolated trans-cinnamic acid increased the survival rate and modulated the immune system of G. mellonella larvae infected with pathogenic microorganisms. The anti-infection effect of the S. griseocarneus R132 fermentation product led us to sequence its genome, which was assembled and annotated using the Rast and antiSMASH platforms. The assembled genome consisted of 227 scaffolds represented on a linear chromosome of 8.85 Mb and 71.3% of GC. We detected conserved domains typical of enzymes that produce molecules with biological activity, such as polyketides and non-ribosomal and ribosomal peptides, indicating a great potential for obtaining new antibiotics and molecules with biotechnological application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02942-1.
Collapse
|
9
|
Pereira MF, Rossi CC, da Silva GC, Rosa JN, Bazzolli DMS. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog Dis 2021; 78:5909969. [PMID: 32960263 DOI: 10.1093/femspd/ftaa056] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The larva of the greater wax moth Galleria mellonella is an increasingly popular model for assessing the virulence of bacterial pathogens and the effectiveness of antimicrobial agents. In this review, we discuss details of the components of the G. mellonella larval immune system that underpin its use as an alternative infection model, and provide an updated overview of the state of the art of research with G. mellonella infection models to study bacterial virulence, and in the evaluation of antimicrobial efficacy. Emphasis is given to virulence studies with relevant human and veterinary pathogens, especially Escherichia coli and bacteria of the ESKAPE group. In addition, we make practical recommendations for larval rearing and testing, and overcoming potential limitations of the use of the model, which facilitate intra- and interlaboratory reproducibility.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, 36800-000, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-901, Rio de Janeiro, RJ, Brazil
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
10
|
Doucette KA, Chaiyasit P, Calkins DL, Martinez KN, Van Cleave C, Knebel CA, Tongraar A, Crans DC. The Interfacial Interactions of Glycine and Short Glycine Peptides in Model Membrane Systems. Int J Mol Sci 2020; 22:ijms22010162. [PMID: 33375246 PMCID: PMC7795424 DOI: 10.3390/ijms22010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The interactions of amino acids and peptides at model membrane interfaces have considerable implications for biological functions, with the ability to act as chemical messengers, hormones, neurotransmitters, and even as antibiotics and anticancer agents. In this study, glycine and the short glycine peptides diglycine, triglycine, and tetraglycine are studied with regards to their interactions at the model membrane interface of Aerosol-OT (AOT) reverse micelles via 1H NMR spectroscopy, dynamic light scattering (DLS), and Langmuir trough measurements. It was found that with the exception of monomeric glycine, the peptides prefer to associate between the interface and bulk water pool of the reverse micelle. Monomeric glycine, however, resides with the N-terminus in the ordered interstitial water (stern layer) and the C-terminus located in the bulk water pool of the reverse micelle.
Collapse
Affiliation(s)
- Kaitlin A. Doucette
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Prangthong Chaiyasit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (A.T.)
| | - Donn L. Calkins
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Kayli N. Martinez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Callan A. Knebel
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (A.T.)
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
- Correspondence: ; Tel.: +1-970-491-7635
| |
Collapse
|
11
|
Pereira MF, Rossi CC. Overview of rearing and testing conditions and a guide for optimizing Galleria mellonella breeding and use in the laboratory for scientific purposes. APMIS 2020; 128:607-620. [PMID: 32970339 DOI: 10.1111/apm.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The greater wax moth Galleria mellonella is an increasingly popular and consolidated alternative infection model to assess microbial virulence and the effectiveness of antimicrobial compounds. The lack of G. mellonella suppliers aiming at scientific purposes and a lack of well-established protocols for raising and testing these animals may impact results and reproducibility between different laboratories. In this review, we discuss the state of the art of rearing the larvae in situ, providing an overview of breeding and testing conditions commonly used and their influence on larval health and experiments results, from setting up the environment, providing the ideal diet, understanding the effects of pretreatments, choosing the best testing conditions, to exploring the most from the results obtained. Meanwhile, we guide the reader through the most practical ways of dealing with G. mellonella to achieve successful experiments.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|