1
|
Khan NA, Alvi A, Alqassim S, Akbar N, Khatoon B, Kawish M, Faizi S, Shah MR, Alawfi BS, Siddiqui R. Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens. Biometals 2024; 37:1113-1125. [PMID: 38705945 DOI: 10.1007/s10534-024-00595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/02/2024] [Indexed: 05/07/2024]
Abstract
With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Adeelah Alvi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE
| | - Saif Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE.
| | - Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Bushra Khatoon
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, , Edinburgh, EH14 4AS, UK
| |
Collapse
|
2
|
Siddiqui R, Khatoon B, Kawish M, Sajeev S, Faizi S, Shah MR, Alharbi AM, Khan NA. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. Int Microbiol 2024:10.1007/s10123-024-00584-w. [PMID: 39276173 DOI: 10.1007/s10123-024-00584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
Free-living amoebae infections are on the rise while the prognosis remains poor. Current therapies are ineffective, and there is a need for novel effective drugs which can target Naegleria, Balamuthia, and Acanthamoeba species. In this study, we determined the effects of a nano-formulation based on flavonoid patuletin-loaded gallic acid functionalized zinc oxide nanoparticles (PA-GA-ZnO) against Acanthamoeba, Balamuthia, and Naegleria trophozoites. Characterization of the nano-formulation was accomplished utilizing analytical tools, namely Fourier-transform infrared spectroscopy, drug entrapment efficiency, polydispersity index, dimensions, and surface morphologies. Anti-amoebic effects were investigated using amoebicidal assay, cytopathogenicity assay, and cytotoxicity of the nano-formulation on human cells. The findings revealed that nano-formulation (PA-GA-ZnO) displayed significant anti-amoebic properties and augmented effects of patuletin alone against all three brain-eating amoebae. When tested alone, patuletin nano-formulations showed minimal toxicity effects against human cells. In summary, the nano-formulations evaluated herein depicts efficacy versus Acanthamoeba, Balamuthia, and Naegleria. Nonetheless, future studies are needed to comprehend the molecular mechanisms of patuletin nano-formulations versus free-living amoebae pathogens, in addition to animal studies to determine their potential value for clinical applications.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Bushra Khatoon
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sreedevi Sajeev
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Shaheen Faizi
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
- School of Science, College of Science and Engineering, University of Derby, Derby, DE22 1GB, UK.
| |
Collapse
|
3
|
Paredes-Hernández U, Aguilar-Peña LV, Isaac-Olivé K, Ocampo-García B, Contreras I, Estrada JA, Izquierdo G, Morales-Avila E, Aranda-Lara L. Enhancing photodynamic and radionuclide therapy by small interfering RNA (siRNA)-RAD51 transfection via self-emulsifying delivery systems (SNEDDS). Cytotherapy 2024:S1465-3249(24)00826-0. [PMID: 39186024 DOI: 10.1016/j.jcyt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AIMS Gene-silencing by small interfering RNA (siRNA) is an attractive therapy to regulate cancer death, tumor recurrence or metastasis. Because siRNAs are easily degraded, it is necessary to develop transport and delivery systems to achieve efficient tumor targeting. Self-nanoemulsifying systems (SNEDDS) have been successfully used for pDNA transport and delivery, so they may be useful for siRNA. The aim of this work is to introduce siRNA-RAD51 into a SNEDDS prepared with Phospholipon-90G, Labrafil-M1944-CS and Cremophor-RH40 and evaluate its efficacy in preventing homologous recombination of DNA double-strand breaks caused by photodynamic therapy (PDT) and ionizing radiation (IR). METHODS The siRNA-RAD51 was loaded into SNEDDS using chitosan. Transfection capacity was estimated by comparison with Lipofectamine-2000. RESULTS SNEDDS(siRNA-RAD51) induced gene silencing effect on the therapies evaluated by cell viability and clonogenic assays using T47D breast cancer cells. CONCLUSIONS SNEDDS(siRNA-RAD51) shown to be an effective siRNA-delivery system to decrease cellular resistance in PDT or IR.
Collapse
Affiliation(s)
- Ulises Paredes-Hernández
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Leslie V Aguilar-Peña
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Germán Izquierdo
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| |
Collapse
|
4
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
5
|
Nazir A, Abbas M, Iqbal DN, Ameen F, Al-Mijalli SH, Ahmad N, Iqbal M. Fabrication of CMC/PVA/Dextrin-Based Polymeric Membrane for Controlled Release of Cefixime With Enhanced Antibacterial Activity. Dose Response 2024; 22:15593258241264951. [PMID: 38912332 PMCID: PMC11193932 DOI: 10.1177/15593258241264951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
This study focuses on the investigation of the significance of polymers in drug delivery approaches. The carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and dextrin-based hydrogel membrane were prepared and employed for the sustained release of third-generation oral antibiotic (cefixime). Different proportions of CMC, PVA and dextrin were blended and hydrogel membranes were fabricated via solvent casting method. The prepared membrane was characterized by FTIR, SEM, UV-visible, TGA and swelling analysis. Cefixime drug was incorporated in the CMC/PVA/dextrin matrix and drug release was investigated. The sustained release of the tested drug (cefixime) was investigated and the drug was released in 120 min in the phosphate-buffered saline (PBS) solution. The antibacterial activity of the prepared membrane was promising against Proteus vulgaris, salmonella typhi, Escherichia coli and Bacillus subtilis strains. The swelling capabilities, thermal stability and non-toxic nature of the prepared CMC/PVA/dextrin membrane could have potential applications for cefixime drug in delivery in a controlled way for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Basic Science (Section Biochemistry), University of Veterinary and Animals Science Lahore, Jhang, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Fadia Ameen
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Siddiqui R, Boghossian A, Alqassim SS, Kawish M, Gul J, Jabri T, Shah MR, Khan NA. Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures. Arch Microbiol 2023; 205:170. [PMID: 37017767 DOI: 10.1007/s00203-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Jasra Gul
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Lu Y, Xu X, Li J. Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications. J Mater Chem B 2023; 11:3338-3355. [PMID: 36987937 DOI: 10.1039/d3tb00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Adhesive materials are natural or synthetic polymers with the ability to adhere to the surface of luminal mucus or epithelial cells. They are widely used in the biomedical field due to their unique adhesion, biocompatibility, and excellent surface properties. When used in the human body, they can adhere to an accessible target and remain at the focal site for a longer period, improving the therapeutic effect on local disease. An adhesive material with bacteriostatic properties can play an antibacterial role at the focal site and the adhesive properties of the material can prevent the focal site from being infected by bacteria for a period. In addition, some adhesive materials can promote cell growth and tissue repair. In this review, the properties and mechanism of natural adhesive materials, organic adhesive materials, composite adhesive materials, and underwater adhesive materials have been introduced systematically. The applications of these adhesive materials in drug delivery, antibacterials, tissue repair, and other applications are described in detail. Finally, we have discussed the prospects and challenges of using adhesive materials in the field of biomedicine.
Collapse
Affiliation(s)
- Yongping Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Mahmood A, Khan L, Ijaz M, Nazir I, Naseem M, Tahir MA, Aamir MN, Rehman MU, Asim MH. Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization. Molecules 2023; 28:molecules28062827. [PMID: 36985803 PMCID: PMC10055996 DOI: 10.3390/molecules28062827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Cefixime (CFX) belongs to a group of third-generation cephalosporin antibiotics with low water solubility and low intestinal permeability, which ultimately leads to significantly low bioavailability. AIM This study aimed to increase solubility, improve drug release, and intestinal permeability of CFX by loading into SEDDS. METHODS Suitable excipients were selected based on drug solubility, percent transmittance, and emulsification efficiency. Pseudo-ternary phase diagram was fabricated for the identification of effective self-emulsification region. The best probably optimized formulations were further assessed for encumbered drug contents, emulsification time, cloud point measurement, robustness to dilution, mean droplet size, zeta potential, polydispersity index (PDI), and thermodynamic and chemical stability. Moreover, in vitro drug release studies and ex vivo permeation studies were carried out and apparent drug permeability Papp of different formulations was compared with the marketed brands of CFX. RESULTS Amongst the four tested SEDDS formulations, F-2 formulation exhibited the highest drug loading of 96.32%, emulsification time of 40.37 ± 3 s, mean droplet size of 19.01 ± 1.12 nm, and demonstrated improved long-term thermodynamic and chemical stability when stored at 4 °C. Release studies revealed a drug release of 97.32 ± 4.82% within 60 min in simulated gastric fluid. Similarly, 97.12 ± 5.02% release of CFX was observed in simulated intestinal fluid within 120 min; however, 85.13 ± 3.23% release of CFX was observed from the marketed product. Ex vivo permeation studies displayed a 2.7-fold increase apparent permeability compared to the marketed product in 5 h. CONCLUSION Owing to the significantly improved drug solubility, in vitro release and better antibacterial activity, it can be assumed that CFX-loaded SEDDS might lead to an increased bioavailability and antibacterial activity, possibly leading to improved therapeutic effectiveness.
Collapse
Affiliation(s)
- Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates
- Health and Biomedical Research Centre (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Laraib Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Mahrukh Naseem
- Department of Zoology, University of Baluchistan, Quetta 87300, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | | |
Collapse
|
9
|
Arshad R, Arshad MS, Tabish TA, Shah SNH, Afzal S, Shahnaz G. Amidated Pluronic Decorated Muco-Penetrating Self-Nano Emulsifying Drug Delivery System (SNEDDS) for Improved Anti- Salmonella typhi Potential. Pharmaceutics 2022; 14:2433. [PMID: 36365252 PMCID: PMC9694248 DOI: 10.3390/pharmaceutics14112433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 12/20/2023] Open
Abstract
The enteric system residing notorious Salmonella typhimurium (S. typhi) is an intracellular, food-borne, and zoonotic pathogen causing typhoid fever. Typhoid fever is one of the leading causes of mortality and morbidity in developing and underdeveloped countries. It also increased the prevalence of multidrug resistance globally. Currently, available anti-bacterial modalities are unable to penetrate into the intracellular compartments effectively for eradicating S. typhi infection. Therefore, in this study, we developed nanostructured lipid-based carriers in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for targeted delivery of ciprofloxacin (CIP) into the S. typhi intracellular reservoirs. Capryol 90, Tween 80, and Span 20 were finalized as suitable oil, surfactant, and co-surfactant, respectively, according to the pseudoternary phase diagram emulsifying region. Targeting capability and mucopenetration of the SNEDDS was attributed to the inclusion of amidated pluronic (NH2-F127). Developed NH2-F127 SNEDDS were characterized via physicochemical, in vitro, ex vivo, and in vivo evaluation parameters. The size of the SNEDDS was found to be 250 nm, having positively charged zeta potential. In vitro dissolution of SNEDDS showed 80% sustained release of CIP in 72 h with maximum entrapment efficiency up to 90% as well as good hemocompatibility by showing less than 0.2% hemolysis and 90% biocompatibility. The survival rate of S. typhi in macrophages (RAW 264.7) was minimal, i.e., only 2% in the case of NH2-F127 SNEDDS. Macrophage uptake assay via nanostructures confirmed the maximum cellular uptake as evidenced by the highest fluorescence. Biofilm dispersion assay showed rapid eradication of developed resistant biofilms on the gall bladder. In vivo pharmacokinetics showed improved bioavailability by showing an increased area under the curve (AUC) value. Taken together, NH2-F127-SNEDDS can be utilized as an alternative and efficient delivery system for the sustained release of therapeutic amounts of CIP for the treatment of S. typhi.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Saira Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Quad-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
10
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
11
|
Poudwal S, Shende P. Multi-strategic approaches for enhancing active transportation using self-emulsifying drug delivery system. J Drug Target 2022; 30:726-736. [PMID: 35451898 DOI: 10.1080/1061186x.2022.2069783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral delivery is the most desired route of drug administration and it can be more beneficial for patients suffering from chronic diseases wherein frequent parenteral administration of proteins such as insulin and calcitonin is required. The BCS class II drugs show low aqueous solubility and high permeability whereas BCS class IV drugs suffer from low aqueous solubility and low permeability. Additionally, biologic drugs are highly sensitive to presence of bioenzymes and bile salts when administered orally. Self-emulsifying drug delivery system (SEDDS) is a thermodynamically stable lipid formulation that enhances oral absorption of active ingredients via the opening of tight junctions, increasing the membrane fluidity, and thus overcomes the physiological barriers like viscous mucus layer, strong acid conditions and enzymatic degradation. An understanding of different theories that govern SEDDS formation and drug release can help in formulating a highly stable and effective drug delivery system. Poorly permeable drugs such as chlorpromazine require modification using methods like hydrophobic ion pairing, complexation with phospholipids, etc. to enable high entrapment efficiency which is discussed in the article. Additionally, the article gives an overview of the influence of polymers, length of fatty acids chain and zeta potential in enhancing permeation across the intestinal membrane.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|