1
|
Secco V, Tiago T, Staats R, Preet S, Chia S, Vendruscolo M, Carra S. HSPB6: A lipid-dependent molecular chaperone inhibits α-synuclein aggregation. iScience 2024; 27:110657. [PMID: 39280615 PMCID: PMC11402235 DOI: 10.1016/j.isci.2024.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
The process of protein misfolding and aggregation is associated with various cytotoxic effects. Understanding how this phenomenon is regulated by the protein homeostasis system, however, is difficult, since it takes place through a complex non-linear network of coupled microscopic steps, including primary nucleation, fibril elongation, and secondary nucleation, which depend on environmental factors. To address this problem, we studied how the aggregation of α-synuclein, a protein associated with Parkinson's disease, is modulated by molecular chaperones and lipid membranes. We focused on small heat shock proteins (sHSPs/HSPBs), which interact with proteins and lipids and are upregulated during aging, a major risk factor for protein misfolding diseases. HSPBs act on different microscopic steps to prevent α-synuclein aggregation, with HSPB6 showing a lipid-dependent chaperone activity. Our findings provide an example of how HSPBs diversified their mechanisms of action to reach an efficient regulation of protein misfolding and aggregation within the complex cellular environment.
Collapse
Affiliation(s)
- Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Swapan Preet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Krishnarjuna B, Sharma G, Im SC, Auchus R, Anantharamaiah GM, Ramamoorthy A. Characterization of nanodisc-forming peptides for membrane protein studies. J Colloid Interface Sci 2024; 653:1402-1414. [PMID: 37801850 PMCID: PMC10864042 DOI: 10.1016/j.jcis.2023.09.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Lipid-bilayer nanodiscs provide a stable, native-like membrane environment for the functional and structural studies of membrane proteins and other membrane-binding molecules. Peptide-based nanodiscs having unique properties are developed for membrane protein studies and other biological applications. While the self-assembly process rendering the formation of peptide-nanodiscs is attractive, it is important to understand the stability and suitability of these nanodisc systems for membrane protein studies. In this study, we investigated the nanodiscs formation by the anti-inflammatory and tumor-suppressing peptide AEM28. AEM28 is a chimeric peptide containing a cationic-rich heparan sulfate proteoglycan- (HSPG)-binding domain from human apolipoprotein E (hapoE) (141-150) followed by the 18A peptide's amino acid sequence. AEM28-based nanodiscs made with different types of lipids were characterized using various biophysical techniques and compared with the nanodiscs formed using 2F or 4F peptides. Variable temperature dynamic light-scattering and 31P NMR experiments indicated the fusion and size heterogeneity of nanodiscs at high temperatures. The suitability of AEM28 and Ac-18A-NH2- (2F-) based nanodiscs for studying membrane proteins is demonstrated by reconstituting and characterizing a drug-metabolizing enzyme, cytochrome-P450 (CYP450), or the redox complex CYP450-CYP450 reductase. AEM28 and 2F were also tested for their efficacies in solubilizing E. coli membranes to understand the possibility of using them for detergent-free membrane protein isolation. Our experimental results suggest that AEM28 nanodiscs are suitable for studying membrane proteins with a net positive charge, whereas 2F-based nanodiscs are compatible with any membrane proteins and their complexes irrespective of their charge. Furthermore, both peptides solubilized E. coli cell membranes, indicating their use in membrane protein isolation and other applications related to membrane solubilization.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA
| | - Sang-Choul Im
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard Auchus
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA; National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Tallahassee, FL 32310, USA.
| |
Collapse
|
3
|
Overduin M, Kervin TA, Klarenbach Z, Adra TRC, Bhat RK. Comprehensive classification of proteins based on structures that engage lipids by COMPOSEL. Biophys Chem 2023; 295:106971. [PMID: 36801589 DOI: 10.1016/j.bpc.2023.106971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the β barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Trixie Rae C Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh K Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
5
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
6
|
Overduin M, Tran A, Eekels DM, Overduin F, Kervin TA. Transmembrane Membrane Readers form a Novel Class of Proteins That Include Peripheral Phosphoinositide Recognition Domains and Viral Spikes. MEMBRANES 2022; 12:1161. [PMID: 36422153 PMCID: PMC9692390 DOI: 10.3390/membranes12111161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins are broadly classified as transmembrane (TM) or peripheral, with functions that pertain to only a single bilayer at a given time. Here, we explicate a class of proteins that contain both transmembrane and peripheral domains, which we dub transmembrane membrane readers (TMMRs). Their transmembrane and peripheral elements anchor them to one bilayer and reversibly attach them to another section of bilayer, respectively, positioning them to tether and fuse membranes while recognizing signals such as phosphoinositides (PIs) and modifying lipid chemistries in proximity to their transmembrane domains. Here, we analyze full-length models from AlphaFold2 and Rosetta, as well as structures from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, using the Membrane Optimal Docking Area (MODA) program to map their membrane-binding surfaces. Eukaryotic TMMRs include phospholipid-binding C1, C2, CRAL-TRIO, FYVE, GRAM, GTPase, MATH, PDZ, PH, PX, SMP, StART and WD domains within proteins including protrudin, sorting nexins and synaptotagmins. The spike proteins of SARS-CoV-2 as well as other viruses are also TMMRs, seeing as they are anchored into the viral membrane while mediating fusion with host cell membranes. As such, TMMRs have key roles in cell biology and membrane trafficking, and include drug targets for diseases such as COVID-19.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Finn Overduin
- Institute of Nutritional Science, University of Potsdam, 14476 Potsdam, Germany
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
9
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics 2021; 18:483-502. [PMID: 34351250 DOI: 10.1080/14789450.2021.1962302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestin, GAT and VHS modules, membrane-perturbing annexin, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids and assembled bacterial and viral particles. EXPERT OPINION The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses, and lipidons as lipid "codons" recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Ravula T, Dai X, Ramamoorthy A. Solid-State NMR Study to Probe the Effects of Divalent Metal Ions (Ca 2+ and Mg 2+) on the Magnetic Alignment of Polymer-Based Lipid Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7780-7788. [PMID: 34129342 PMCID: PMC8587631 DOI: 10.1021/acs.langmuir.1c01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Divalent cations, especially Ca2+ and Mg2+, play a vital role in the function of biomolecules and making them important to be constituents in samples for in vitro biophysical and biochemical characterizations. Although lipid nanodiscs are becoming valuable tools for structural biology studies on membrane proteins and for drug delivery, most types of nanodiscs used in these studies are unstable in the presence of divalent metal ions. To avoid the interaction of divalent metal ions with the belt of the nanodiscs, synthetic polymers have been designed and demonstrated to form stable lipid nanodiscs under such unstable conditions. Such polymer-based nanodiscs have been shown to provide an ideal platform for structural studies using both solid-state and solution NMR spectroscopies because of the near-native cell-membrane environment they provide and the unique magnetic-alignment behavior of large-size nanodiscs. In this study, we report an investigation probing the effects of Ca2+ and Mg2+ ions on the formation of polymer-based lipid nanodiscs and the magnetic-alignment properties using a synthetic polymer, styrene maleimide quaternary ammonium (SMA-QA), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids. Phosphorus-31 NMR experiments were used to evaluate the stability of the magnetic-alignment behavior of the nanodiscs for varying concentrations of Ca2+ or Mg2+ at different temperatures. It is remarkable that the interaction of divalent cations with lipid headgroups promotes the stacking up of nanodiscs that results in the enhanced magnetic alignment of nanodiscs. Interestingly, the reported results show that both the temperature and the concentration of divalent metal ions can be optimized to achieve the optimal alignment of nanodiscs in the presence of an applied magnetic field. We expect the reported results to be useful in the design of nanodisc-based nanoparticles for various applications in addition to atomic-resolution structural and dynamics studies using NMR and other biophysical techniques.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Xiaofeng Dai
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- Xiaofeng Dai was a visiting student from the College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|