1
|
Kamikawa T, Hashimoto A, Yamazaki N, Adachi J, Matsushima A, Kikuchi K, Hori Y. Bioisostere-conjugated fluorescent probes for live-cell protein imaging without non-specific organelle accumulation. Chem Sci 2024; 15:8097-8105. [PMID: 38817570 PMCID: PMC11134342 DOI: 10.1039/d3sc06957e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Specific labeling of proteins using membrane-permeable fluorescent probes is a powerful technique for bioimaging. Cationic fluorescent dyes with high fluorescence quantum yield, photostability, and water solubility provide highly useful scaffolds for protein-labeling probes. However, cationic probes generally show undesired accumulation in organelles, which causes a false-positive signal in localization analysis. Herein, we report a design strategy for probes that suppress undesired organelle accumulation using a bioisostere for intracellular protein imaging in living cells. Our design allows the protein labeling probes to possess both membrane permeability and suppress non-specific accumulation and has been shown to use several protein labeling systems, such as PYP-tag and Halo tag systems. We further developed a fluorogenic PYP-tag labeling probe for intracellular proteins and used it to visualize multiple localizations of target proteins in the intracellular system. Our strategy offers a versatile design for undesired accumulation-suppressed probes with cationic dye scaffolds and provides a valuable tool for intracellular protein imaging.
Collapse
Affiliation(s)
- Takuya Kamikawa
- Graduate School of Science, Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Akari Hashimoto
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Nozomi Yamazaki
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Junya Adachi
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| | - Ayami Matsushima
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| | - Yuichiro Hori
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| |
Collapse
|
2
|
Jo G, Park Y, Park MH, Hyun H. Rational Design of a Small Molecular Near-Infrared Fluorophore for Improved In Vivo Fluorescence Imaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7227. [PMID: 38005156 PMCID: PMC10672724 DOI: 10.3390/ma16227227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The near-infrared (NIR) fluorescence imaging modality has great potential for application in biomedical imaging research owing to its unique characteristics, such as low tissue autofluorescence and noninvasive visualization with high spatial resolution. Although a variety of NIR fluorophores are continuously reported, the commercially available NIR fluorophores are still limited, owing to complex synthetic processes and poor physicochemical properties. To address this issue, a small molecular NIR fluorophore (SMF800) was designed and developed in the present work to improve in vivo target-specific fluorescence imaging. After conjugation with pamidronate (PAM) and bovine serum albumin (BSA), the SMF800 conjugates exhibited successful in vivo targeting in bone and tumor tissues with low background uptake, respectively. The improved in vivo performance of the SMF800 conjugate demonstrated that the small molecular NIR fluorophore SMF800 can be widely used in a much broader range of imaging applications. The structure of SMF800, which was developed by considering two important physicochemical properties, water solubility and conjugatability, is first introduced. Therefore, this work suggests a simple and rational approach to design small, hydrophilic, and conjugatable NIR fluorophores for targeted bioimaging.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
3
|
Golombek S, Hoffmann T, Hann L, Mandler M, Schmidhuber S, Weber J, Chang YT, Mehling R, Ladinig A, Knecht C, Leyens J, Schlensak C, Wendel HP, Schneeberger A, Avci-Adali M. Improved tropoelastin synthesis in the skin by codon optimization and nucleotide modification of tropoelastin-encoding synthetic mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:642-654. [PMID: 37650117 PMCID: PMC10462787 DOI: 10.1016/j.omtn.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 μg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 μg of native TE mRNA with a me1 Ψ modification or 10 and 30 μg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 μg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 μg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.
Collapse
Affiliation(s)
- Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Ludmilla Hann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Markus Mandler
- Accanis Biotech, Karl-Farkas-Gasse 22, Vienna 1030, Austria
| | | | - Josefin Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Roman Mehling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Röntgenweg 13, 72076 Tübingen, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Christian Knecht
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Johanna Leyens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Tumor Targeting with Methotrexate-Conjugated Zwitterionic Near-Infrared Fluorophore for Precise Photothermal Therapy. Int J Mol Sci 2022; 23:ijms232214127. [PMID: 36430604 PMCID: PMC9697011 DOI: 10.3390/ijms232214127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted tumor imaging can effectively enable image-guided surgery and precise cancer therapy. Finding the right combination of anticancer drugs and near-infrared (NIR) fluorophores is the key to targeted photothermal cancer treatment. In this study, a tumor-targetable NIR fluorophore conjugate with rapid body clearance was developed for accurate tumor imaging and effective photothermal therapy (PTT). The methotrexate (MTX) and zwitterionic NIR fluorophore conjugate (MTX-ZW) were prepared by conjugating a folate antagonist MTX with an aminated ZW800-1 analog to increase the tumor targetability for NIR laser-based PTT of cancer. The MTX, known as a poor tumor-selective drug, showed high tumor accumulation and rapid background clearance after conjugation with the highly water-soluble zwitterionic NIR fluorophore up to 4 h post-injection. The photothermal energy was generated from the MTX-ZW conjugate to induce necrotic cell death in the targeted tumor site under 808 nm laser irradiation. Compared with the previously reported MTX conjugates, the MTX-ZW conjugate can be a great candidate for targeted tumor imaging and fluorescence-guided photothermal cancer therapy. Therefore, these results provide a strategy for the design of drug-fluorophore conjugates and elaborate therapeutic platforms for cancer phototherapy.
Collapse
|
5
|
Shang Y, Zeng J, Xie Z, Sasaki N, Matsusaki M. Effect of Extracellular Matrix Density and Cell Number on Blood Capillary Formation in Three-dimensional Tissue. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Li Z, Jiang F, Yu M, Li S, Chen L, Hong M. Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework. Nat Commun 2022; 13:2142. [PMID: 35440109 PMCID: PMC9018843 DOI: 10.1038/s41467-022-29737-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Materials exhibiting aggregation-induced emission (AIE) behaviour enable strong emission in solid state and can respond to various external stimuli, which may facilitate the development of materials for optical sensing, bioimaging or optoelectronic devices. Herein, we use an AIE luminogen 2’,5’-diphenyl-[1,1’:4’,1”-terphenyl]-4,4”-dicarboxylic acid as the ligand to prepare an AIEgen-based MOF (metal-organic framework) named FJI-H31. FJI-H31 exhibits bright luminescence under ambient conditions (under air and at room temperature), but almost no emission is observed under vacuum. Our investigation shows that the emission intensity displays a smooth and reversible enhancement with increased gas pressure, which may be attributed to the restriction of intramolecular motion brought by structural deformation under pressure stimulus. Unlike most pressure-responsive MOFs, the luminescence reverts to its original state once gas pressure recovers. By virtue of its unique optical properties, a luminescent MOF with sensing ability of gas-pressure is realized. Compounds displaying aggregation-induced emission behavior may have application in the preparation of smart materials. Here, the authors report a luminogen-containing metal-organic framework for which luminescence intensity changes are observed in response to gas pressure.
Collapse
Affiliation(s)
- Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Muxin Yu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shengchang Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Tumor-Targeted ZW800-1 Analog for Enhanced Tumor Imaging and Photothermal Therapy. Pharmaceutics 2021; 13:pharmaceutics13101648. [PMID: 34683940 PMCID: PMC8537849 DOI: 10.3390/pharmaceutics13101648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
ZW800-1, a representative zwitterionic near-infrared (NIR) fluorophore, can minimize background tissue uptake owing to its balanced surface charges, and therefore, is widely used for improved NIR fluorescence imaging. As ZW800-1 has no tumor targetability, tumor imaging is highly dependent on the ability of the molecules conjugated to the ZW800-1. To enable tumor targeting using ZW800-1 without additional conjugation, we developed a tumor-targetable and renal-clearable ZW800-1 analog (ZW800-AM) based on the structural modification of ZW800-1. Specifically, an amine group on the center linker of the ZW800-1 indocyanine backbone was modified by replacing phenoxypropionic acid with tyramine linkage on the meso-chlorine atom. This modification improved the tumor targeting ability, which is known as the structure-inherent targeting strategy. More importantly, ZW800-AM not only showed sufficient tumor accumulation without nonspecific uptake but also produced a photothermal effect, killing tumor cells under 808 nm NIR laser irradiation. In addition, ZW800-AM exhibited rapid renal elimination from the body within 4 h of injection, similar to ZW800-1. Overall, the discovery of ZW800-AM as a bifunctional phototherapeutic agent may provide an ideal alternative for tumor-targeted imaging and phototherapy.
Collapse
|
8
|
Bi S, Deng Z, Jiang Q, Jiang M, Zeng S. A H 2S-Triggered Dual-Modal Second Near-Infrared/Photoacoustic Intelligent Nanoprobe for Highly Specific Imaging of Colorectal Cancer. Anal Chem 2021; 93:13212-13218. [PMID: 34554729 DOI: 10.1021/acs.analchem.1c02200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endogenous H2S-triggered intelligent optical nanoprobe combining second near-infrared (NIR-II) fluorescence with photoacoustic (PA) imaging can provide more comprehensive information to further improve the sensitivity and reliability of diagnosis for colorectal tumor, which is rarely explored. Herein, an endogenous H2S-triggered SiO2@Ag nanoprobe was designed for in situ dual-modal NIR-II/PA imaging of colorectal cancer. The designed dual-modal nanoprobe can be converted to SiO2@Ag2S after in situ biosynthesis via a sulfuration reaction with the over-expressed endogenous H2S in the colorectal tumor. More importantly, the designed SiO2@Ag nanoprobe exhibits high sensitivity and specificity for diagnosing colorectal cancer in vivo via dual-modal NIR-II/PA imaging. These results provide a new NIR-II/PA dual-modal imaging strategy for noninvasive intelligent detection of colorectal cancer.
Collapse
Affiliation(s)
- Shenghui Bi
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Zhiming Deng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Qing Jiang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Mingyang Jiang
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| | - Songjun Zeng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
9
|
Park MH, Jo G, Lee BY, Kim EJ, Hyun H. Rapid Tumor Targeting of Renal-Clearable ZW800-1 Conjugate for Efficient Photothermal Cancer Therapy. Biomedicines 2021; 9:biomedicines9091151. [PMID: 34572335 PMCID: PMC8470137 DOI: 10.3390/biomedicines9091151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
The combination of near-infrared (NIR) fluorophores and photothermal therapy (PTT) provides a new opportunity for safe and effective cancer treatment. However, the precise molecular design of functional NIR fluorophores with desired properties, such as high tumor targetability and low nonspecific uptake, remains challenging. In this study, a renal-clearable NIR fluorophore conjugate with high tumor targetability was developed for efficient photothermal cancer therapy. The isoniazid (INH)–ZW800-1 conjugate (INH–ZW) was synthesized by conjugating an antibiotic drug, INH, with a well-known zwitterionic NIR fluorophore, ZW800-1, to improve in vivo performance and fluorescence-guided cancer phototherapy. INH–ZW not only showed rapid tumor accumulation without nonspecific tissue/organ uptake within 1 h after the injection but also generated thermal energy to induce cancer cell death under NIR laser irradiation. Compared with previously reported ZW800-1 conjugates, INH–ZW preserved the ideal biodistribution of ZW800-1 and facilitated improved tumor targeting and PTT. Together, these results demonstrate that the INH–ZW conjugate has great potential to serve as an effective PTT agent capable of rapid tumor targeting and high renal clearance, with excellent photothermal efficacy.
Collapse
Affiliation(s)
- Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea; (M.H.P.); (E.J.K.)
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
| | - Bo Young Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Eun Jeong Kim
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea; (M.H.P.); (E.J.K.)
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-613-792-652
| |
Collapse
|
10
|
Abdul Sisak MA, Louis F, Aoki I, Lee SH, Chang YT, Matsusaki M. A Near-Infrared Organic Fluorescent Probe for Broad Applications for Blood Vessels Imaging by High-Throughput Screening via 3D-Blood Vessel Models. SMALL METHODS 2021; 5:e2100338. [PMID: 34927878 DOI: 10.1002/smtd.202100338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Indexed: 06/14/2023]
Abstract
Blood vessels are present in all of the organs, reflecting their importance for oxygen and nutrient delivery to the cells. Until now, no organic fluorophore has been reported for the live imaging of endothelium although the layer is the key to blood vessel functions. Here, the discovery of a blood vessel organic probe at near-infrared (NIR) wavelength range (BV-NIR) through an engineered blood capillary-based screening system, which is a more physiological model than a conventional cell culture condition, is reported. This selected Cy5 based probe shows the highest specific adsorption property out of 240 candidates on the endothelium and is equivalent to an anti-CD31 antibody in terms of intensity. The BV-NIR probe indicating strong and stable in vitro, ex vivo, and in vivo imaging of the endothelium even after histological immunostaining processes shows potential as a convenient tool for live imaging as well as for covisualization with a specific antibody.
Collapse
Affiliation(s)
- Muhammad Asri Abdul Sisak
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
| | - Sun Hyeok Lee
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Li J, Sasaki N, Itaka K, Terpstra M, Levato R, Matsusaki M. Regulation of Chondrocyte Differentiation by Changing Intercellular Distances Using Type II Collagen Microfibers. ACS Biomater Sci Eng 2020; 6:5711-5719. [PMID: 33320579 DOI: 10.1021/acsbiomaterials.0c00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is a common degenerative disease that mainly occurs in older age groups, and the search for an effective cure remains a major global challenge. The technology of constructing 3D in vitro cartilage tissue with zonal differentiated structures for use as alternative implants for treating osteoarthritis has attracted researchers' attention. For this challenge, it is important for understanding the relationship between chondrocyte differentiation and the amount of extracellular matrix by modulating intercellular distance. This study investigates the interplay between chondrocyte differentiation and intercellular distance. Type II collagen microfibers (CMF II) were used as a distance regulator by varying their amounts. The results indicated that the secretion of cartilage-specific glycosaminoglycan after 2 weeks of differentiation from the chondrogenic cells, ATDC5, was decreased with an increased intercellular distance. Also, the shortest intercellular distance, being ATDC5 cells without CMF II, presented an upregulated gene expression profile of cartilage markers. The groups with CMF II-mediated intracellular distances, however, did not show the upregulation. The elastic modulus of the 3D samples increased depending on the amount of CMF II, relating to the differentiation preventing property of the CMF II. These findings suggest the promising potential of this approach for the modulation of chondrocyte differentiation.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Margo Terpstra
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht 3584CX, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht 3584CX, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CM, The Netherlands
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan.,Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Abdul Sisak MA, Louis F, Hyeok Lee S, Chang YT, Matsusaki M. Fabrication of Blood Capillary Models for Live Imaging Microarray Analysis. MICROMACHINES 2020; 11:E727. [PMID: 32727054 PMCID: PMC7464508 DOI: 10.3390/mi11080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/29/2023]
Abstract
Conventional microarray analysis usually deals with the monolayer or two-dimensional (2D) assays for the high-throughput screening applications. Even though these cell-based assays are effective for preliminary screening at least to have information on cytotoxicity, they do not adequately re-create the in vivo complexity of three-dimensional (3D) tissues. In this study, 3D-blood capillary models were constructed by using physiological collagen microfibers (CMF), which provide the extracellular matrix in the complex tissue. Micro-droplets of fibrin gels containing CMF, endothelial cells, and fibroblasts were cultured for five days in 48-wells plate to provide a medium-throughput system for screening applications. Blood capillaries networks were formed by optimizing the concentration of CMF used and the number of cells. Finally, this screening method was a powerful assay for the application on the selection of not only a specific chemical probe for blood capillary live-imaging, but also a drug, aptamer, and peptide with potential blood vessel targeting property.
Collapse
Affiliation(s)
- Muhammad Asri Abdul Sisak
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Sun Hyeok Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Korea; (S.H.L.); (Y.-T.C.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Korea; (S.H.L.); (Y.-T.C.)
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
13
|
Lin W, Colombani-Garay D, Huang L, Duan C, Han G. Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1627. [PMID: 32164043 DOI: 10.1002/wnan.1627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/29/2023]
Abstract
Boron dipyrromethene (BODIPY), as a traditional fluorescent dye, has drawn increasing attention because of its excellent photophysical properties like adjustable spectra and outstanding photostability. BODIPY dyes could be assembled into nanoparticles for cancer imaging and therapy via rational design. In this review, the bio-applications of BODIPY-containing nanoparticles are introduced in detail, such as cellular imaging, near-infrared fluorescence imaging, computed tomography imaging, photoacoustic imaging, phototherapy, and theranostics. The construction strategies of BODIPY-containing nanoparticles are emphasized so the review has three sections-self-assembly of small molecules, chemical conjugation with hydrophilic compounds, and physical encapsulation. This review not only summarizes various and colorific bio-applications of BODIPY-containing nanoparticles, but also provides reasonable design methods of BODIPY-containing nanoparticles for cancer theranostics. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, P.R. China
| | - Daniel Colombani-Garay
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, P.R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
14
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
15
|
Ma X, Zhang C, Feng L, Liu SH, Tan Y, Yin J. Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. J Mater Chem B 2020; 8:9906-9912. [DOI: 10.1039/d0tb01890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IR780 as a commercially available dye with near-infrared emission has been extensively applied in fluorescent probes and bioimaging.
Collapse
Affiliation(s)
- Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| |
Collapse
|
16
|
Yan C, Shi L, Guo Z, Zhu W. Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Kim JJ, Lee YA, Su D, Lee J, Park SJ, Kim B, Jane Lee JH, Liu X, Kim SS, Bae MA, Lee JS, Hong SC, Wang L, Samanta A, Kwon HY, Choi SY, Kim JY, Yu YH, Ha HH, Wang Z, Tam WL, Lim B, Kang NY, Chang YT. A Near-Infrared Probe Tracks and Treats Lung Tumor Initiating Cells by Targeting HMOX2. J Am Chem Soc 2019; 141:14673-14686. [PMID: 31436967 DOI: 10.1021/jacs.9b06068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor initiating cells (TIC) are resistant to conventional anticancer therapy and associated with metastasis and relapse in cancer. Although various TIC markers and their antibodies have been proposed, it is limited to the use of antibodies for in vivo imaging or treatment of TIC. In this study, we discovered heme oxygenase 2 (HMOX2) as a novel biomarker for TIC and developed a selective small molecule probe TiNIR (tumor initiating cell probe with near infrared). TiNIR detects and enriches the functionally active TIC in human lung tumors, and through the photoacoustic property, TiNIR also visualizes lung TIC in the patient-derived xenograft (PDX) model. Furthermore, we demonstrate that TiNIR inhibits tumor growth by blocking the function of HMOX2, resulting in significantly increased survival rates of the cancer model mice. The novel therapeutic target HMOX2 and its fluorescent ligand TiNIR will open a new path for the molecular level of lung TIC diagnosis and treatment.
Collapse
Affiliation(s)
- Jong-Jin Kim
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - Yong-An Lee
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore
| | - Dongdong Su
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Jungyeol Lee
- New Drug Discovery Center , DGMIF , Daegu 41061 , Republic of Korea
| | - Sung-Jin Park
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Beomsue Kim
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Jia Hui Jane Lee
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,School of Biological Sciences , Nanyang Technological University , Singapore 637551 , Singapore
| | - Xiao Liu
- Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division , Korea Research Institute of Chemical Technology , Yuseong-Gu , Gajeong-ro 141 , Daejeon 34114 , Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division , Korea Research Institute of Chemical Technology , Yuseong-Gu , Gajeong-ro 141 , Daejeon 34114 , Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seoul 02792 , Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seoul 02792 , Republic of Korea
| | - Lu Wang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Department of Chemical Biology , Max Planck Institute for Medical Research , Heidelberg 69120 , Germany
| | - Animesh Samanta
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Chemical Sciences and Technology Division , CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST) , Industrial Estate P O , Pappanamcode , Thiruvananthapuram 695019 , India
| | - Haw-Young Kwon
- Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | | | - Jun-Young Kim
- A-fourth, SL VAXiGEN , KOREA BIO PARK , Daewangpangyo-ro 700, Bundang-gu , Seongnam-si , Gyenggi-do 13488 , Korea
| | - Young Hyun Yu
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences 11 , Sunchon National University , Suncheon 57922 , Republic of Korea
| | - Hyung-Ho Ha
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences 11 , Sunchon National University , Suncheon 57922 , Republic of Korea
| | - Zhenxun Wang
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,Cancer Science Institute of Singapore , National University of Singapore , Singapore 117599 , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
| | - Bing Lim
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,Merck Sharp and Dohme Translational Medicine Research Centre , 8A Biomedical Grove , Singapore 138648 , Singapore
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,New Drug Discovery Center , DGMIF , Daegu 41061 , Republic of Korea
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| |
Collapse
|
18
|
Xu Z, Huang X, Zhang MX, Chen W, Liu SH, Tan Y, Yin J. Tissue Imaging of Glutathione-Specific Naphthalimide-Cyanine Dye with Two-Photon and Near-Infrared Manners. Anal Chem 2019; 91:11343-11348. [PMID: 31386811 DOI: 10.1021/acs.analchem.9b02458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular probes suitable for different fluorescence imaging technologies can meet the requirements of different scientific research in biological applications. In this work, a naphthalimide-cyanine-based sulfonamide was used to specifically visualize the glutathione of mouse tissues with a two-photon manner for the naphthalimide moiety and a near-infrared manner for the cyanine moiety, respectively. The results showed that this probe served as a dual-model tissue-imaging agent for visualization of glutathione with around 200 μm imaging depth in a two-photon manner and 120 μm imaging depth in a near-infrared manner, which provided a model for tissue imaging in the visible and near-infrared channels.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China.,Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430205 , People's Republic of China
| | - Xiaoting Huang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| |
Collapse
|
19
|
Abstract
Despite our understanding that the microvasculature plays a multifaceted role in the development and progression of various conditions, we know little about the extent of this involvement. A need exists for non-invasive, clinically meaningful imaging modalities capable of elucidating microvascular information to aid in our understanding of disease, and to aid in the diagnosis/monitoring of disease for more patient-specific care. In this review article, a number of imaging techniques are summarized that have been utilized to investigate the microvasculature of skin, along with their advantages, disadvantages and future perspectives in preclinical and clinical settings. These techniques include dermoscopy, capillaroscopy, Doppler sonography, laser Doppler flowmetry (LDF) and perfusion imaging, laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), including its Doppler and dynamic variant and the more recently developed OCT angiography (OCTA), photoacoustic imaging, and spatial frequency domain imaging (SFDI). Attention is largely, but not exclusively, placed on optical imaging modalities that use intrinsic optical signals to contrast the microvasculature. We conclude that whilst each imaging modality has been successful in filling a particular niche, there is no one, all-encompassing modality without inherent flaws. Therefore, the future of cutaneous microvascular imaging may lie in utilizing a multi-modal approach that will counter the disadvantages of individual systems to synergistically augment our imaging capabilities.
Collapse
Affiliation(s)
- Anthony J Deegan
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE., Seattle, WA 98195, United States of America
| | | |
Collapse
|
20
|
Nishiguchi A, Matsusaki M, Kano MR, Nishihara H, Okano D, Asano Y, Shimoda H, Kishimoto S, Iwai S, Akashi M. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 2018; 179:144-155. [PMID: 29986232 DOI: 10.1016/j.biomaterials.2018.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/09/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - Mitsunobu R Kano
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Pharmaceutical Biomedicine, Okayama University, 1-1-1 Tsushima-Naka Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Okano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yoshiya Asano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiroshi Shimoda
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Satoko Kishimoto
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|