1
|
Meng F, Xu C, Zhang L, Huang X, Zhang X, Zhang W, Luo Y, Zhang W, Huang W, Huo F, Zhang S. A Structural Mimic of Carbonic Anhydrase in Zeolitic Imidazolate Frameworks via Trans-functionalization for Enhancing Hydrolytic Activity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0434. [PMID: 39130495 PMCID: PMC11310446 DOI: 10.34133/research.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely considered as ideal platforms for the preparation of biomimetic catalysts, but it remains challenging to fabricate MOF-based enzyme-like catalysts with optimal activity. Here, we leverage the inherent flexibility of MOFs and propose a novel trans-functionalization strategy to construct a carbonic anhydrase (CA) mimic by the structural transformation from ZIF-L to ZIF-8. Theoretical and experimental results reveal that during the structural transformation, the hydroxyl group will preferentially coordinate with the interlayer Zn clusters to form the CA-like active center Zn-N3-OH. Therefore, more accessible active centers are generated on the as-prepared ZIF-8-OH, resulting in substantially enhanced catalytic activity in the hydrolysis of para-nitrophenyl acetate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies),
Nanjing Tech University, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies),
Nanjing Tech University, Nanjing 211816, P.R. China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies),
Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
2
|
Ding L, Xu N, Wu Y, Li P, Bai J, Hai W, Li R, Yang Y, Liu J, Gao CY. Exploring the Performance Improvement for CO 2 Chemical Fixation in Zn/ZnMg-MOFs. Inorg Chem 2024; 63:3317-3326. [PMID: 38329889 DOI: 10.1021/acs.inorgchem.3c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A new 3D zinc-based metal-organic framework {[Zn7L2(DMF)3(H2O)(OH)2]·5DMF}n (1) (H6L = 5,5',5″-(methylsilanetriyl) triisophthalic acid) was constructed with an organosilicon-based linker, where H6L is a tetrahedral structure furnished with rich -COO- chelating sites for Zn(II) immobilization. Compound 1 exhibited two types of irregular one-dimensional channels and a three-dimensional skeleton with large specific surface area, making it a promising catalytic platform. Moreover, by incorporation of the second metal ion into the inorganic node of framework 1, isomorphic bimetallic MOF ZnMg-1 was successfully synthesized. ZnMg-1 demonstrated enhanced catalytic activity compared to 1 under identical conditions. Contrast experiments and theoretical calculations indicate that bimetallic active sites play a facilitating role in the chemical fixation of epoxides and CO2. It indicated that efficient chemical fixation of CO2 to cyclic carbonates was obtained over isomorphic MOF catalysts 1 and ZnMg-1.
Collapse
Affiliation(s)
- Lin Ding
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Ning Xu
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Yakun Wu
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Peihe Li
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Jincheng Bai
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Wenfeng Hai
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Ruiyan Li
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Yang Yang
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Jinghai Liu
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mogolia Minzu University, Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Chao-Ying Gao
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University (IMUN), Tongliao 028000, Inner Mongolia, People's Republic of China
| |
Collapse
|
3
|
Wu Y, Yan T, Zhang W, Chen S, Fu Y, Zhang Z, Ma H. Adsorption Interface-Induced H...F Charge Transfer in Ultramicroporous Metal–Organic Frameworks for Perfluorinated Gas Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Wu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Tong Yan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhonghui Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
4
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Wu X, Xiong J, Liu S, Chen B, Liang S, Lou W, Zong M. Peroxidase Encapsulated in Peroxidase Mimics via in situAssembly with Enhanced Catalytic Performance. ChemCatChem 2020. [DOI: 10.1002/cctc.201902055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Wu
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Jun Xiong
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Shuli Liu
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Bin Chen
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Shan Liang
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Wenyong Lou
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative Innovation Dongguan 221116 P.R. China
| | - Minhua Zong
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
6
|
Zhang P, Wang S, Ma S, Xiao FS, Sun Q. Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chem Commun (Camb) 2020; 56:10631-10641. [DOI: 10.1039/d0cc04351f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Feature article summarizes our progress in the design of biomimetic POPs for catalysis and molecular recognition with enhanced performance.
Collapse
Affiliation(s)
- Pengcheng Zhang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Sai Wang
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
- Department of Chemistry
| | - Shengqian Ma
- Department of Chemistry
- University of North Texas
- USA
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
| | - Qi Sun
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
7
|
Wu Y, Huang Z, Jiang H, Wang C, Zhou Y, Shen W, Xu H, Deng H. Facile Synthesis of Uniform Metal Carbide Nanoparticles from Metal-Organic Frameworks by Laser Metallurgy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44573-44581. [PMID: 31661951 DOI: 10.1021/acsami.9b13864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the fast and efficient conversion of metal-organic frameworks (MOFs) to phase pure transition-metal carbide (TMC) nanoparticles with uniform size using laser as the energy source, consuming only 6 W power. Nanoparticles of HfC, ZrC, TiC, V8C7, α-MoC, Cr3C2, and FeCx with homogeneous sizes (varied between 6 and 20 nm) were successfully produced, among which HfC and ZrC nanoparticles were obtained, for the first time, with sizes less than 10 nm and in the pure phase. This method was operated directly in air, in stark contrast to traditional furnace heating and laser spray methods, where a protective atmosphere is required. The use of MOFs allowed us to precisely tune the composition of TMC nanoparticles by dialing in the right type and desirable amounts of organic linkers. FeCx nanoparticles doped with various percentages of nitrogen atoms were synthesized for the Fischer-Tropsch reaction without any pretreatment or activation. Extremely high iron time of yield (FTY) values were observed, 415 and 550 μmol gFe-1 s-1 (with addition of K), in a 40 h test without any decay in performance. A high olefin to paraffin ratio was achieved for C2 to C11 products, where the ratio for C3 was higher than 10.
Collapse
Affiliation(s)
- Yushan Wu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , Hubei , China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , PR China
| | - Haoqing Jiang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , Hubei , China
| | - Chao Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , Hubei , China
| | - Yi Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , Hubei , China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , PR China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , PR China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , Hubei , China
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , Hubei , China
| |
Collapse
|