1
|
Zhang T, Pabst TP, Hoyt JM, Pecoraro MV, Chirik PJ. Mechanistic Studies and Identification of Catalyst Deactivation Pathways for Pyridine(diimine) Iron Catalyzed C(sp 2)-H Borylation. ACS Catal 2024; 14:13999-14011. [PMID: 39555381 PMCID: PMC11563351 DOI: 10.1021/acscatal.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The synthesis and application of aryl-substituted pyridine(diimine) iron complexes (RPDI)FeCH3 to the catalytic borylation of heteroarenes under thermal conditions is described. Improvements in catalyst design and performance were guided by precatalyst activation studies, where investigations into stoichiometric reactivities of iron borohydride (4- t Bu- iPrPDI)Fe(H2BPin) and iron furyl (4- t Bu- iPrPDI)Fe(2-methylfuryl) complexes revealed facile C(sp2)-H activation and a slower and potentially turnover-limiting C(sp2)-B formation step. Formation of the flyover dimer, [(4- t Bu- iPrPDI)Fe]2 was identified as a catalyst deactivation pathway and formally iron(0) complexes were found to be inactive for borylation. The pyridine(diimine) iron borohydride, flyover dimer and furyl complexes were characterized by X-ray diffraction and their electronic structures determined by a combination of NMR, EPR, and Mössbauer spectroscopies corroborated by DFT calculations. The role of the redox-active pyridine(diimine) ligand in catalytic C-H borylation was also investigated.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jordan M Hoyt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Trouvé J, Delahaye V, Tomasini M, Rajeshwaran P, Roisnel T, Poater A, Gramage-Doria R. Repurposing a supramolecular iridium catalyst via secondary Zn⋯O[double bond, length as m-dash]C weak interactions between the ligand and substrate leads to ortho-selective C(sp 2)-H borylation of benzamides with unusual kinetics. Chem Sci 2024; 15:11794-11806. [PMID: 39092112 PMCID: PMC11290415 DOI: 10.1039/d4sc01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
The iridium-catalyzed C-H borylation of benzamides typically leads to meta and para selectivities using state-of-the-art iridium-based N,N-chelating bipyridine ligands. However, reaching ortho selectivity patterns requires extensive trial-and-error screening via molecular design at the ligand first coordination sphere. Herein, we demonstrate that triazolylpyridines are excellent ligands for the selective iridium-catalyzed ortho C-H borylation of tertiary benzamides and, importantly, we demonstrate the almost negligible effect of the first coordination sphere in the selectivity, which is so far unprecedented in iridium C-H bond borylations. Remarkably, the activity is dramatically enhanced by exploiting a remote Zn⋯O[double bond, length as m-dash]C weak interaction between the substrate and a rationally designed molecular-recognition site in the catalyst. Kinetic studies and DFT calculations indicate that the iridium-catalyzed C-H activation step is not rate-determining, this being unique for remotely controlled C-H functionalizations. Consequently, a previously established supramolecular iridium catalyst designed for meta-borylation of pyridines is now compatible with the ortho-borylation of benzamides, a regioselectivity switch that is counter-intuitive regarding precedents in the literature. In addition, we highlight the role of the cyclohexene additive in avoiding the formation of undesired side-products as well as accelerating the HBpin release event that precedes the catalyst regeneration step, which is highly relevant for the design of powerful and selective iridium borylating catalysts.
Collapse
Affiliation(s)
| | | | - Michele Tomasini
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | | | | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | |
Collapse
|
3
|
Wang J, Zuo L, Guo Z, Yang C, Jiang Y, Huang X, Wu L, Tang Z. Al 2 O 3 -coated BiVO 4 Photoanodes for Photoelectrocatalytic Regioselective C-H Activation of Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202315478. [PMID: 37946688 DOI: 10.1002/anie.202315478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Photoelectrochemistry is becoming an innovative approach to organic synthesis. Generally, the current photoelectrocatalytic organic transformations suffer from limited reaction type, low conversion efficiency and poor stability. Herein, we develop efficient and stable photoelectrode materials using metal oxide protective layer, with a focus on achieving regioselective activation of amine compounds. Notably, our photoelectrochemistry process is implemented under mild reaction conditions and does not involve any directing groups, transition metals or oxidants. The results demonstrate that beyond photocatalysis and electrocatalysis, photoelectrocatalysis exhibits high efficiency, remarkable repeatability and good functional group tolerance, highlighting its great potential for applications.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Lizhu Wu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Roque JB, Shimozono AM, Pabst TP, Hierlmeier G, Peterson PO, Chirik PJ. Kinetic and thermodynamic control of C(sp 2)-H activation enables site-selective borylation. Science 2023; 382:1165-1170. [PMID: 38060669 PMCID: PMC10898344 DOI: 10.1126/science.adj6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/10/2023] [Indexed: 02/29/2024]
Abstract
Catalysts that distinguish between electronically distinct carbon-hydrogen (C-H) bonds without relying on steric effects or directing groups are challenging to design. In this work, cobalt precatalysts supported by N-alkyl-imidazole-substituted pyridine dicarbene (ACNC) pincer ligands are described that enable undirected, remote borylation of fluoroaromatics and expansion of scope to include electron-rich arenes, pyridines, and tri- and difluoromethoxylated arenes, thereby addressing one of the major limitations of first-row transition metal C-H functionalization catalysts. Mechanistic studies established a kinetic preference for C-H bond activation at the meta-position despite cobalt-aryl complexes resulting from ortho C-H activation being thermodynamically preferred. Switchable site selectivity in C-H borylation as a function of the boron reagent was thereby preliminarily demonstrated using a single precatalyst.
Collapse
Affiliation(s)
- Jose B. Roque
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Alex M. Shimozono
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Paul O. Peterson
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| |
Collapse
|
5
|
Lee B, Pabst TP, Hierlmeier G, Chirik PJ. Exploring the Effect of Pincer Rigidity on Oxidative Addition Reactions with Cobalt(I) Complexes. Organometallics 2023; 42:708-718. [PMID: 37223209 PMCID: PMC10201995 DOI: 10.1021/acs.organomet.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cobalt complexes containing the 2,6-diaminopyridine-substituted PNP pincer (iPrPNMeNP = 2,6-(iPr2PNMe)2(C5H3N)) were synthesized. A combination of solid-state structures and investigation of the cobalt(I)/(II) redox potential established a relatively rigid and electron-donating chelating ligand as compared to iPrPNP (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)). Based on a buried volume analysis, the two pincer ligands are sterically indistinguishable. Nearly planar, diamagnetic, four-coordinate complexes were observed independent of the field strength (chloride, alkyl, aryl) of the fourth ligand completing the coordination sphere of the metal. Computational studies supported a higher barrier for C-H oxidative addition, largely a result of the increased rigidity of the pincer. The increased oxidative addition barrier resulted in stabilization of (iPrPNMeNP)Co(I) complexes, enabling the characterization of the cobalt boryl and the cobalt hydride dimer by X-ray crystallography. Moreover, (iPrPNMeNP)CoMe served as an efficient precatalyst for alkene hydroboration likely because of the reduced propensity to undergo oxidative addition, demonstrating that reactivity and catalytic performance can be tuned by rigidity of pincer ligands.
Collapse
Affiliation(s)
- Boran Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Hassan MMM, Guria S, Dey S, Das J, Chattopadhyay B. Transition metal-catalyzed remote C─H borylation: An emerging synthetic tool. SCIENCE ADVANCES 2023; 9:eadg3311. [PMID: 37083526 PMCID: PMC10121176 DOI: 10.1126/sciadv.adg3311] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Transition metal-catalyzed C─H bond activation and borylation is a powerful synthetic method that offers versatile synthetic transformation from organoboron compounds to virtually all other functional groups. Compared to the ortho-borylation, remote borylation remains more challenging owing to the inaccessibility of these C─H bonds. Enforcing the metal catalyst toward the remote C─H bonds needs well-judged catalyst design through proper ligand development. This review article aims to summarize the recent discoveries for the remote C─H borylation by the employment of new catalyst/ligand design with the help of steric of the ligand, noncovalent interactions. It has been found that C─H borylation now takes part in the total synthesis of natural products in a shorter route. Whereas, Ir-catalyzed C─H borylation is predominant, cobalt catalyst has also started to affect this field for sustainable and cost-effective development.
Collapse
Affiliation(s)
- Mirja Md Mahamudul Hassan
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Saikat Guria
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sayan Dey
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Jaitri Das
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
7
|
Veth L, Grab HA, Dydio P. Recent Trends in Group 9 Catalyzed C–H Borylation Reactions: Different Strategies To Control Site-, Regio-, and Stereoselectivity. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1711-5889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractOrganoboron compounds continue contributing substantially to advances in organic chemistry with their increasing role as both synthetic intermediates and target compounds for medicinal chemistry. Particularly attractive methods for their synthesis are based on the direct borylation of C–H bonds of available starting materials since no additional pre-functionalization steps are required. However, due to the high abundance of C–H bonds with similar reactivity in organic molecules, synthetically useful C–H borylation protocols demand sophisticated strategies to achieve high regio- and stereoselectivity. For this purpose, selective transition-metal-based catalysts have been developed, with group 9 centered catalysts being among the most commonly utilized. Recently, a multitude of diverse strategies has been developed to push the boundaries of C–H borylation reactions with respect to their regio- and enantioselectivity. Herein, we provide an overview of approaches for the C–H borylation of arenes, alkenes, and alkanes based on group 9 centered catalysts with a focus on the recent literature. Lastly, an outlook is given to assess the future potential of the field.1 Introduction1.1 Mechanistic Considerations1.2 Selectivity Issues in C–H Borylation1.3 Different Modes of Action Employing Directing Group Strategies in C–H Borylation1.4 Scope and Aim of this Short Review2 Trends in C–H Borylation Reactions2.1 Photoinduced Catalysis2.2 Transfer C–H Borylation2.3 Lewis Acid Mediated C–H Borylation2.4 Directed Metalation2.5 Miscellaneous C–H Borylation Reactions2.6 Electrostatic Interactions2.7 Hydrogen Bonding3 Conclusion and Outlook
Collapse
|
8
|
|
9
|
Pabst TP, Chirik PJ. Development of Cobalt Catalysts for the meta-Selective C(sp 2)–H Borylation of Fluorinated Arenes. J Am Chem Soc 2022; 144:6465-6474. [PMID: 35369695 PMCID: PMC9010962 DOI: 10.1021/jacs.2c01162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cobalt precatalysts for the meta-selective borylation of fluorinated arenes are described. Initial screening and stoichiometric reactivity studies culminated in the preparation of a cobalt alkyl precatalyst supported by the sterically protected terpyridine (5,5″-Me2ArTpy = 4'-(4-N,N'-dimethylaminophenyl)-5,5″-dimethyl-2,2':6',2″-terpyridine). Under the optimized conditions, borylation with this precatalyst afforded up to 16 turnovers and near-exclusive meta regioselectivity with a range of substituted fluoroarenes in cyclopentyl methyl ether solvent at room temperature. Deuterium kinetic isotope effects of 2.9(2) at 23 °C support a turnover-limiting and selectivity-determining C(sp2)-H activation step, and stoichiometric C-H activation experiments provided insights into the identity of the C-H activating intermediate in catalysis. Analysis of the relevant Co-C and C-H bond thermodynamics support that the thermodynamics of C-H activation favor ortho-to-fluorine selectivity, providing additional, indirect support for kinetic control of C-H activation as the origin of meta selectivity.
Collapse
Affiliation(s)
- Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Lee B, Pabst TP, Chirik PJ. Effect of Pincer Methylation on the Selectivity and Activity in (PNP)Cobalt-Catalyzed C(sp 2)-H Borylation. Organometallics 2021; 40:3766-3774. [PMID: 34898806 DOI: 10.1021/acs.organomet.1c00499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cobalt complexes supported by a tetramethylated PNP pincer ligand (Me4 iPrPNP = 2,6-(iPr2PCMe2)2(C5H3N)) have been synthesized and structurally characterized. Examples include cobalt(I)-choride, -methyl, -aryl and -benzofuranyl derivatives. The performance of these compounds was evaluated in the catalytic borylation of fluorinated arenes using B2Pin2 as the boron source. While P-C bond cleavage, a known deactivation pathway in [(PNP)Co]-catalyzed borylation was suppressed, the overall activity and selectivity of the borylation of fluoroarenes was reduced as compared to the previously reported [(PNP)Co] catalyst lacking isopropylene spacers. Stoichiometric reactions support an increased barrier for oxidative addition to cobalt(I), a result of the increased steric profile and decreased conformational flexibility of the pincer resulting from methylation distal to the active site. With a more activated substrate such as benzofuran, catalytic borylation with cobalt(I) precatalysts and HBPin was observed. Monitoring the progress of the reaction by NMR spectroscopy revealed the presence of cobalt(III) intermediates during the course of the borylation, supporting a cobalt(I)-(III) redox cycle.
Collapse
Affiliation(s)
- Boran Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Kuleshova O, Asako S, Ilies L. Ligand-Enabled, Iridium-Catalyzed ortho-Borylation of Fluoroarenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Olena Kuleshova
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Viereck P, Rummelt SM, Soja NA, Pabst TP, Chirik PJ. Synthesis and Asymmetric Alkene Hydrogenation Activity of C2-Symmetric Enantioenriched Pyridine Dicarbene Iron Dialkyl Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephan M. Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Natalia A. Soja
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Pabst TP, Chirik PJ. A Tutorial on Selectivity Determination in C(sp 2)-H Oxidative Addition of Arenes by Transition Metal Complexes. Organometallics 2021; 40:813-831. [PMID: 33867622 PMCID: PMC8045024 DOI: 10.1021/acs.organomet.1c00030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 01/07/2023]
Abstract
![]()
A Tutorial
on factors that determine the selectivity in C(sp2)–H
activation and functionalization reactions involving
two-electron oxidative addition processes with transition metals is
presented. The interplay of the thermodynamics of C(sp2)–H oxidative addition and kinetic influences upon regioselectivity
are presented alongside pedagogically valuable experimental and computational
results from the literature. Mechanisms and energetics of chelate-assisted
C(sp2)–H oxidative addition are examined, as are
concepts related to chemoselectivity in the oxidative addition of
C(sp2)–H or C(sp2)–X (X = F, Cl,
Br, I) bonds with aryl halide substrates.
Collapse
Affiliation(s)
- Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|