1
|
Krech A, Laktsevich-Iskryk M, Deil N, Fokin M, Kimm M, Ošeka M. Asymmetric cyclopropanation via an electro-organocatalytic cascade. Chem Commun (Camb) 2024; 60:14026-14029. [PMID: 39463232 DOI: 10.1039/d4cc05092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We report an iminium ion-promoted, asymmetric synthesis of cyclopropanes via an electrocatalytic, iodine-mediated ring closure. The mild, controlled electrochemical generation of electrophilic iodine species in catalytic quantities prevents organocatalyst deactivation, while also eliminating the need for halogenating reagents, thus simplifying traditional synthetic approaches.
Collapse
Affiliation(s)
- Anastasiya Krech
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Marharyta Laktsevich-Iskryk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Nora Deil
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Mihhail Fokin
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Mariliis Kimm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Maksim Ošeka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| |
Collapse
|
2
|
Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes. JACS AU 2024; 4:4187-4193. [PMID: 39610755 PMCID: PMC11600189 DOI: 10.1021/jacsau.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
We describe a metal-free aziridination of unactivated olefins to generate N-pyridinium aziridines. Subsequent cross-coupling affords N-aryl aziridines, and reductive depyridylation affords N-H aziridines. Kinetics experiments, based on a variable time normalization analysis (VTNA), indicate that aziridination proceeds via a highly electrophilic N-pyridinium iminoiodinane intermediate. These studies expand build-and-couple aziridine synthesis to unactivated olefins and introduce charge-enhanced electrophilicity into the chemistry of iminoiodinanes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Phong Thai
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Isaac R. Deavenport
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Cali M. Kucifer
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Doktor K, Vantourout JC, Michaudel Q. A Unified Synthesis of Diazenes from Primary Amines Using a SuFEx/Electrochemistry Strategy. Org Lett 2024; 26:7501-7506. [PMID: 39225700 PMCID: PMC11406575 DOI: 10.1021/acs.orglett.4c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electrochemical synthesis of 1,2-disubsituted diazenes via anodic oxidation of bench stable symmetrical and unsymmetrical sulfamides is reported. This work capitalizes on the streamlined preparation of diverse N,N'-disubstituted sulfamides using Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry that were subsequently subjected to electrochemical oxidation to afford the desired diazenes. The electrochemical nature of the reaction conditions obviated the need for chlorinating reagents, which considerably improved the sustainability of the overall process. Noteworthy, in addition to the synthesis of alkyl diazenes, these milder conditions were shown to be competent for the formation of azobenzenes, albeit in lower yields. Mechanistic experiments were conducted to delineate the reaction pathway and to rationalize the formation of side products observed during the electro-oxidation of N,N'-diarylsulfamides.
Collapse
Affiliation(s)
- Katarzyna Doktor
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
6
|
Pan M, Shen Y, Li Y, Shen C, Li W. B 2(OH) 4-Mediated Reductive Ring-Opening of N-Tosyl Aziridines by Nitroarenes: A Green and Regioselective Access to Vicinal Diamines. J Org Chem 2024; 89:8656-8667. [PMID: 38831644 DOI: 10.1021/acs.joc.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various β-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.
Collapse
Affiliation(s)
- Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
7
|
Hilton TA, Leach AG, McKay AP, Watson AJB. Accessing Rare α-Heterocyclic Aziridines via Brønsted Acid-catalyzed Michael Addition/Annulation: Scope, Limitations, and Mechanism. Chemistry 2024; 30:e202303993. [PMID: 38315627 DOI: 10.1002/chem.202303993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We report an approach to the diastereoselective synthesis of 1,2-disubstituted heterocyclic aziridines. A Brønsted acid-catalyzed conjugate addition of anilines to trisubstituted heterocyclic chloroalkenes provides an intermediate 1,2-chloroamine. Diastereocontrol was found to vary significantly with solvent selection, with computational modelling confirming selective, spontaneous fragmentation in the presence of trace acids, proceeding through a pseudo-cyclic, protonated intermediate and transition state. These chloroamines can then be converted to the aziridine by treatment with LiHMDS with high stereochemical fidelity. This solvent-induced stereochemical enrichment thereby enables an efficient route to rare cis-aziridines with high dr. The scope, limitations, and mechanistic origins of selectivity are also presented.
Collapse
Affiliation(s)
- Timothy A Hilton
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Andrew G Leach
- School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| |
Collapse
|
8
|
Donnelly K, Baumann M. Advances in the Continuous Flow Synthesis of 3- and 4-Membered Ring Systems. Chemistry 2024:e202400758. [PMID: 38564288 DOI: 10.1002/chem.202400758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Small carbo- and heterocyclic ring systems have experienced a significant increase in importance in recent years due to their relevance in modern pharmaceuticals, as building blocks for designer materials or as synthetic intermediates. This necessitated the development of new synthetic methods for the preparation of these strained ring systems focusing on effectiveness and scalability. The high ring strain of these entities as well as the use of high-energy reagents and intermediates has often challenged their synthesis. Continuous flow approaches have thus emerged as highly effective means to safely and reliably access these strained scaffolds. In this short review, key developments in this field are summarised showcasing the power of continuous flow approaches for accessing 3- and 4-membered ring systems via thermal, photo- and electrochemical processes.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Chen PY, Huang C, Jie LH, Guo B, Zhu S, Xu HC. Unlocking the Potential of Oxidative Asymmetric Catalysis with Continuous Flow Electrochemistry. J Am Chem Soc 2024; 146:7178-7184. [PMID: 38466344 DOI: 10.1021/jacs.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.
Collapse
Affiliation(s)
- Peng-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Bin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shaobin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- NanoFCM INC., Building No. 5, Xinke Square, Xiamen 361006, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
10
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
11
|
Mohan MK, Silenko O, Krasnou I, Volobujeva O, Kulp M, Ošeka M, Lukk T, Karpichev Y. Chloromethylation of Lignin as a Route to Functional Material with Catalytic Properties in Cross-Coupling and Click Reactions. CHEMSUSCHEM 2024:e202301588. [PMID: 38279777 DOI: 10.1002/cssc.202301588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
We present a novel, greener chloromethylation procedure for organosolv aspen lignin under mild reaction conditions without Lewis acid as a catalyst and in acetic acid as a solvent. This synthetic protocol provides a reliable approach to chloromethylated lignin (CML) and means to obtain valuable lignin derivatives. The resulted CML was subsequently transformed into 1-methylimidazolium lignin (ImL), which effectively serves as a stabilizing agent for Pd/CuO nanoparticles (Pd/CuO-NPs). To evaluate the versatility of developed lignin-based catalyst, we investigate its performance in a series of carbon-carbon bond formation reactions, including Suzuki-Miyaura, Sonogashira, Heck reactions, and azide-alkyne cycloaddition (click) reaction. Remarkably, this catalyst exhibited a high degree of catalytic efficiency, resulting in reactions with yields ranging from average to excellent. The heterogeneous catalyst demonstrated outstanding recyclability, enabling its reuse for at least 10 consecutive reaction cycles, with yields consistently falling within the range of 42 % to 84 %. A continuous flow reactor cartridge prototype employing Lignin@Pd/CuO-NPs was developed, yielding results comparable to those achieved in batch reactions. The utilization of Lignin@Pd/CuO-NPs as a catalyst showcases its potential to facilitate diverse carbon-carbon bond formation reactions and underscores its promising recyclability, aligning with the green chemistry metrics and principles of sustainability in chemical processes.
Collapse
Affiliation(s)
- Mahendra K Mohan
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Oleg Silenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 5 Akademika Kukharia Str., 02094, Kyiv, Ukraine
| | - Illia Krasnou
- Department of Materials and Environmental Technology, Tallinn University of Technology (TalTech), Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Olga Volobujeva
- Department of Materials and Environmental Technology, Tallinn University of Technology (TalTech), Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Maksim Ošeka
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
12
|
Banuprakash Goud S, Lal Dhakar R, Samanta S. Copper(I)-Photocatalyzed Diastereoselective Aziridination of N-Sulfonyl Imines with Vinyl Azides: Application to Benzo[f][1,2,3]oxathiazepines Dioxides and Fused Isoxazolines. Chem Asian J 2024; 19:e202300904. [PMID: 38018300 DOI: 10.1002/asia.202300904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
An in situ generated photoactive copper(I)-complex-catalyzed aziridination reaction of cyclic N-sulfonyl imines with α-aryl-substituted vinyl azides irradiated by blue-LEDs light is reported for the first time. This novel SET process represents a mild, sustainable, and pragmatic method for accessing synthetically resourceful sulfamidate-fused aziridines in acceptable chemical yields with excellent diastereoselectivities. Delightedly, pharmacologically attractive benzo[f][1,2,3]oxathiazepine dioxides and fused isoxazoline frameworks were achieved through our newly developed metal-free based ring-expansion techniques, highlighting the synthetic value of accessed aziridines. Finally, the possible mechanism for [2+1] aza-cyclization was presented based on the conduction of a series of control experiments.
Collapse
Affiliation(s)
- S Banuprakash Goud
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| | - Raju Lal Dhakar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| |
Collapse
|
13
|
Liu MS, Du HW, Meng H, Xie Y, Shu W. Unified metal-free intermolecular Heck-type sulfonylation, cyanation, amination, amidation of alkenes by thianthrenation. Nat Commun 2024; 15:529. [PMID: 38225220 PMCID: PMC10789743 DOI: 10.1038/s41467-024-44746-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Direct and site-selective C-H functionalization of alkenes under environmentally benign conditions represents a useful and attractive yet challenging transformation to access value-added molecules. Herein, a unified protocol for a variety of intermolecular Heck-type functionalizations of Csp2-H bond of alkenes has been developed by thianthrenation. The reaction features metal-free and operationally simple conditions for exclusive cine-selective C-H functionalization of aliphatic and aryl alkenes to forge C-C, C-N, C-P, and C-S bonds at room temperature, providing a general protocol for intermolecular Heck-type reaction of alkenes with nucleophiles (Nu = sulfinates, cyanides, amines, amides). Alkenes undergo cine-sulfonylation, cyanation, amination to afford alkenyl sulfones, alkenyl nitriles and enamines.
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Huan Meng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Ying Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China.
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China.
| |
Collapse
|
14
|
Liu F, Ding W, Lin J, Cheng X. Scandium-Catalyzed Electrochemical Synthesis of α-Pyridinyl Tertiary Amino Acids and Esters. Org Lett 2023; 25:7617-7621. [PMID: 37824579 DOI: 10.1021/acs.orglett.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
α-Pyridyl tertiary amino acids have potential pharmaceutical applications because of their structural features. However, their synthesis is still highly limited. Herein, we report a straightforward approach for the electrochemical synthesis of tertiary α-substituted amino acid derivatives via three-component reductive coupling. Using gaseous ammonia as both the N and H source, the α-keto ester reacts directly with 4-CN-pyridine. The application of scandium catalysis is the key for achieving chemoselectivity among various side reaction pathways.
Collapse
Affiliation(s)
- Feng Liu
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| | - Weijie Ding
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Jiacong Lin
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Kumar R, Banerjee N, Kumar P, Banerjee P. Electrochemical Synthesis and Reactivity of Three-Membered Strained Carbo- and Heterocycles. Chemistry 2023; 29:e202301594. [PMID: 37436418 DOI: 10.1002/chem.202301594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Three-membered carbocyclic and heterocyclic ring structures are versatile synthetic building blocks in organic synthesis with biological importance. Moreover, the inherent strain of these three-membered rings leads to their ring-opening functionalization through C->C, C->N, and C-O bond cleavage. Traditional synthesis and ring-opening methods for these molecules require the use of acid catalysts or transition metals. Recently, electro-organic synthesis has emerged as a powerful tool for initiating new chemical transformations. In this review, the synthetic and mechanistic aspects of electro-mediated synthesis and ring-opening functionalization of three-membered carbo- and heterocycles are highlighted.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Nakshatra Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| |
Collapse
|
16
|
Wang S, Wang P, Li SJ, Chen YH, Sun ZJ, Lei A. Electrochemical flow aziridination of unactivated alkenes. Natl Sci Rev 2023; 10:nwad187. [PMID: 38059062 PMCID: PMC10697417 DOI: 10.1093/nsr/nwad187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 12/08/2023] Open
Abstract
Aziridines derived from bioactive molecules may have unique pharmacological activities, making them useful in pharmacology (e.g. mitomycin C). Furthermore, the substitution of the epoxide moiety in epothilone B with aziridine, an analog of epoxides, yielded a pronounced enhancement in its anticancer efficacy. Thus, there is interest in developing novel synthetic technologies to produce aziridines from bioactive molecules. However, known methods usually require metal catalysts, stoichiometric oxidants and/or pre-functionalized amination reagents, causing difficulty in application. A practical approach without a metal catalyst and extra-oxidant for the aziridination of bioactive molecules is in demand, yet challenging. Herein, we report an electro-oxidative flow protocol that accomplishes an oxidant-free aziridination of natural products. This process is achieved by an oxidative sulfonamide/alkene cross-coupling, in which sulfonamide and alkene undergo simultaneous oxidation or alkene is oxidized preferentially. Further anticancer treatments in cell lines have demonstrated the pharmacological activities of these aziridines, supporting the potential of this method for drug discovery.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
17
|
Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Alkenes. Angew Chem Int Ed Engl 2023; 62:e202303032. [PMID: 36929023 PMCID: PMC10189787 DOI: 10.1002/anie.202303032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Cyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes. This strategy exploits dicationic adducts derived from electrolysis of thianthrene in the presence of alkene substrates. We find that these dielectrophiles undergo cyclopropanation with methylene pronucleophiles via alkenyl thianthrenium intermediates. This protocol is scalable, proceeds with high diastereoselectivity, and tolerates diverse functional groups on both the alkene and pronucleophile coupling partners. To validate the utility of this new procedure, we prepared an array of substituted analogs of an established cyclopropane that is en route to multiple pharmaceuticals.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Uriel A. Garcia
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Alison F. Harris
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
18
|
Sato E, Tachiwaki G, Fujii M, Mitsudo K, Washio T, Takizawa S, Suga S. Electrochemical Carbon-Ferrier Rearrangement Using a Microflow Reactor and Machine Learning-Assisted Exploration of Suitable Conditions. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Sato
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Gaku Tachiwaki
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Artificial Intelligence Research Center, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Synthetic Organic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Kaisin G, Bovy L, Joyard Y, Maindron N, Tadino V, Monbaliu JCM. A perspective on automated advanced continuous flow manufacturing units for the upgrading of biobased chemicals toward pharmaceuticals. J Flow Chem 2022; 13:1-15. [PMID: 36467977 PMCID: PMC9707424 DOI: 10.1007/s41981-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Biomass is a renewable, almost infinite reservoir of a large diversity of highly functionalized chemicals. The conversion of biomass toward biobased platform molecules through biorefineries generally still lacks economic viability. Profitability could be enhanced through the development of new market opportunities for these biobased platform chemicals. The fine chemical industry, and more specifically the manufacturing of pharmaceuticals is one of the sectors bearing significant potential for these biobased building blocks to rapidly emerge and make a difference. There are, however, still many challenges to be dealt with before this market can thrive. Continuous flow technology and its integration for the upgrading of biobased platform molecules for the manufacturing of pharmaceuticals is foreseen as a game-changer. This perspective reflects on the main challenges relative to chemical, process, regulatory and supply chain-related burdens still to be addressed. The implementation of integrated continuous flow processes and their automation into modular units will help for tackling with these challenges. Graphical abstract
Collapse
Affiliation(s)
- Geoffroy Kaisin
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Loïc Bovy
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| | - Yoann Joyard
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Nicolas Maindron
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Vincent Tadino
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| |
Collapse
|
20
|
Liu M, Du H, Cui J, Shu W. Intermolecular Metal‐Free Cyclopropanation and Aziridination of Alkenes with XH
2
(X=N, C) by Thianthrenation**. Angew Chem Int Ed Engl 2022; 61:e202209929. [DOI: 10.1002/anie.202209929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ming‐Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Hai‐Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Jian‐Fang Cui
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University 300071 Tianjin P.R. China
| |
Collapse
|
21
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
22
|
Liu MS, Du HW, Cui JF, Shu W. Intermolecular Metal‐Free Cyclopropanation and Aziridination of Alkenes with XH2 (X = N, C) by Thianthrenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming-Shang Liu
- Southern University of Science and Technology Chemistry CHINA
| | - Hai-Wu Du
- Southern University of Science and Technology Chemistry CHINA
| | - Jian-Fang Cui
- Southern University of Science and Technology Chemistry CHINA
| | - Wei Shu
- Southern University of Science and Technology Chemistry Room 5-505, 1088 Xueyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
23
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
24
|
Long H, Chen TS, Song J, Zhu S, Xu HC. Electrochemical aromatic C-H hydroxylation in continuous flow. Nat Commun 2022; 13:3945. [PMID: 35803941 PMCID: PMC9270493 DOI: 10.1038/s41467-022-31634-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The direct hydroxylation of arene C-H bonds is a highly sought-after transformation but remains an unsolved challenge due to the difficulty in efficient and regioselective C-H oxygenation and high reactivity of the phenolic products leading to overoxidation. Herein we report electrochemical C-H hydroxylation of arenes in continuous flow for the synthesis of phenols. The method is characterized by broad scope (compatible with arenes of diverse electronic properties), mild conditions without any catalysts or chemical oxidants, and excellent scalability as demonstrated by the continuous production of 1 mol (204 grams) of one of the phenol products.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China
| | - Tian-Sheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, 361006, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
25
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
26
|
Bajada MA, Sanjosé-Orduna J, Di Liberto G, Tosoni S, Pacchioni G, Noël T, Vilé G. Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chem Soc Rev 2022; 51:3898-3925. [PMID: 35481480 DOI: 10.1039/d2cs00100d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. "Single-atom catalysis" has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications.
Collapse
Affiliation(s)
- Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Jesús Sanjosé-Orduna
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Giovanni Di Liberto
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Sergio Tosoni
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
27
|
de Souza AAN, Bartolomeu ADA, Brocksom TJ, Noël T, de Oliveira KT. Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. J Org Chem 2022; 87:5856-5865. [PMID: 35417160 DOI: 10.1021/acs.joc.2c00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the electrochemical sulfenylation reaction in both batch and continuous flow regimes, involving thiophenols/thiols and enol-acetates to yield α-sulfenylated ketones, without using additional oxidants or catalysts. Studies with different electrolytes were also performed, revealing that quaternary ammonium salts are the best mediators for this reaction. Notably, during the study of the reaction scope, a Boc-cysteine proved to be extremely tolerant to our protocol, thus increasing its relevance. The methodology also proved to be scalable in both batch and continuous flow conditions, opening up possibilities for further studies since these relevant functional groups are important moieties in organic synthesis.
Collapse
Affiliation(s)
- Aline A N de Souza
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Aloisio de A Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UVA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
28
|
Takumi M, Nagaki A. Flash Synthesis and Continuous Production of C-Arylglycosides in a Flow Electrochemical Reactor. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.862766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrochemistry provides a green and atom-efficient route to synthesize pharmaceutical and useful functional molecules, as it eliminates the need for the harsh chemical oxidants and reductants commonly used in traditional chemical reactions. To promote the implementation of electrochemical processes in the industry, there is a strong demand for the development of technologies that would allow for scale-up and a shortened reaction process time. Herein, we report that electrolysis was successfully accomplished using a flow-divided-electrochemical reactor within a few seconds, enabling the desired chemical conversion in a short period of time. Moreover, the narrow electrode gap of the flow reactor, which offers greener conditions than the conventional batch reactor, resulted in the continuous flash synthesis of C-arylglycosides.
Collapse
|
29
|
Yao C, Williams ADN, Gu Y, Norton JR. Isomerization of Aziridines to Allyl Amines via Titanium and Chromium Cooperative Catalysis. J Org Chem 2022; 87:4991-4997. [PMID: 35303410 DOI: 10.1021/acs.joc.1c03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ti/Cr cooperative catalyst isomerizes aziridines to allyl amines under mild conditions. The reaction tolerates a broad range of aziridines with various nitrogen substituents. The titanium catalyst is most successful in opening 1,2-disubstituted aziridines, forming radical intermediates in a highly regioselective manner. The chromium catalyst appears to abstract an H• from these radical intermediates and then return the H• to the titanium system in the form of an H+ and an electron. The reaction is complementary to previous reports on the isomerization of aziridines to allyl amines.
Collapse
Affiliation(s)
- Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Alana D N Williams
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Yiting Gu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
30
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angew Chem Int Ed Engl 2022; 61:e202107811. [PMID: 34478188 PMCID: PMC9303540 DOI: 10.1002/anie.202107811] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.
Collapse
Affiliation(s)
- Shangze Wu
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Jaspreet Kaur
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Tobias A. Karl
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Xianhai Tian
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
31
|
Kooli A, Wesenberg L, Beslać M, Krech A, Lopp M, Noёl T, Ošeka M. Electrochemical Hydroxylation of Electron‐Rich Arenes in Continuous‐Flow. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anni Kooli
- Tallinn University of Technology: Tallinna Tehnikaulikool Department of Chemistry and Biotechnology ESTONIA
| | - Lars Wesenberg
- University of Amsterdam: Universiteit van Amsterdam Van't Hoff Institute for Molecular Sciences (HIMS) NETHERLANDS
| | - Marko Beslać
- TU/e: Technische Universiteit Eindhoven Department of Chemical Engineering and Chemistry NETHERLANDS
| | - Anastasiya Krech
- Tallinn University of Technology: Tallinna Tehnikaulikool Department of Chemistry and Biotechnology ESTONIA
| | - Margus Lopp
- Tallinn University of Technology: Tallinna Tehnikaulikool Department of Chemistry and Biotechnology ESTONIA
| | - Timothy Noёl
- University of Amsterdam: Universiteit van Amsterdam Van't Hoff Institute for Molecular Sciences (HIMS) NETHERLANDS
| | - Maksim Ošeka
- Tallinn University of Technology Department of Chemistry and Biotechnology Akadeemia tee 15 12618 Tallinn ESTONIA
| |
Collapse
|
32
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shangze Wu
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Jaspreet Kaur
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Tobias A. Karl
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Xianhai Tian
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
33
|
Liu S, Cheng X. Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nat Commun 2022; 13:425. [PMID: 35058468 PMCID: PMC8776764 DOI: 10.1038/s41467-022-28099-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Ammonia is one of the most abundant and simple nitrogen sources with decent stability and reactivity. Direct insertion of ammonia into a carbon skeleton is an ideal approach to building valuable N-heterocycles for extensive applications with unprecedented atom and step economy. Here, we show an electrochemical dehydrogenative method in which ammonia is inserted directly into alkenes to build aromatic N-heterocycles in a single step without the use of any external oxidant. This new approach achieves 98–99.2% atom economy with hydrogen as the only byproduct. Quinoline and pyridine with diverse substitutions are readily available. In this work, electrochemistry was used to drive a 4-electron oxidation reaction that is hard to access by other protocols, providing a parallel pathway to nitrene chemistry. In a tandem transformation that included three distinct electrochemical processes, the insertion of ammonia further showcased the tremendous potential to manipulate heterocycles derived from Hantzsch ester to diazine via pyridine and pyrrole. Aromatic heterocycles containing nitrogen are ubiquitous in biologically relevant small molecules. Here the authors show an unorthodox methodology for their synthesis, by inserting the nitrogen atom into a carbon ring, with ammonia in electrochemical conditions.
Collapse
|
34
|
Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Forni JA, Czyz ML, Lupton DW, Polyzos A. An Electrochemical γ-C-H Arylation of Amines in Continuous Flow. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Kaboudin B, Behroozi M, Sadighi S. Recent advances in the electrochemical reactions of nitrogen-containing organic compounds. RSC Adv 2022; 12:30466-30479. [PMCID: PMC9597858 DOI: 10.1039/d2ra04087e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The electrochemical reaction of amines, nitriles, amides, nitroaromatics, and imines has been proven to be a valuable method for the synthesis of various nitrogen-containing organic compounds.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Milad Behroozi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Sepideh Sadighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
37
|
Wang DJ, Targos K, Wickens ZK. Electrochemical Synthesis of Allylic Amines from Terminal Alkenes and Secondary Amines. J Am Chem Soc 2021; 143:21503-21510. [PMID: 34914394 DOI: 10.1021/jacs.1c11763] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Allylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C-H amination strategies remain limited with respect to the viable N-substituents. Herein, we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes. This oxidative transformation proceeds via electrochemical generation of an electrophilic adduct between thianthrene and the alkene substrates. Treatment of these adducts with aliphatic amine nucleophiles and base provides allylic amine products in high yield. This synthetic strategy is also amenable to functionalization of feedstock gaseous alkenes at 1 atm. In the case of 1-butene, high Z-selective crotylation is observed. This strategy, however, is not limited to the synthesis of simple building blocks; complex biologically active molecules are suitable as both alkene and amine coupling partners. Preliminary mechanistic studies implicate vinylthianthrenium salts as key reactive intermediates.
Collapse
Affiliation(s)
- Diana J Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Takumi M, Sakaue H, Nagaki A. Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2021; 61:e202116177. [PMID: 34931424 DOI: 10.1002/anie.202116177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
A novel flow electrochemical reactor that accomplishes electrolysis within a few seconds in a single passage was developed. By using the flow reactor system, the flash electrochemical generation of short-lived carbocations, including oxocarbenium ions, N -acyliminium ions, glycosyl cations, and Ferrier cations was achieved within a few seconds, enabling the subsequent reaction with nucleophiles before their decomposition. Moreover, continuous operation based on the present system enabled the rapid synthesis of pharmaceutical precursors on demand.
Collapse
Affiliation(s)
- Masahiro Takumi
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Hodaka Sakaue
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Aiichiro Nagaki
- Kyoto University, Graduate School of Engineering, Department of Synthetic Chemistry & Biological Chemistry, Katsura, 615-8510, Kyoto, JAPAN
| |
Collapse
|
39
|
Wen Z, Wan T, Vijeta A, Casadevall C, Buglioni L, Reisner E, Noël T. Photocatalytic C-H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. CHEMSUSCHEM 2021; 14:5265-5270. [PMID: 34529334 PMCID: PMC9298336 DOI: 10.1002/cssc.202101767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Indexed: 05/08/2023]
Abstract
The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Zhenghui Wen
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Ting Wan
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Laura Buglioni
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
40
|
Zeng D, Gu L, Zhang L, Li G, He Y. Synthesis of aziridines by electrochemical oxidative annulation of chalcones with primary amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Liu L, Hong X, Hu X. Direct electrochemical reduction of ethyl isonicotinate to 4-pyridinemethanol in an undivided flow reactor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Zhang X, Jiang R, Cheng X. Electrochemical Tandem Olefination and Hydrogenation Reaction with Ammonia. J Org Chem 2021; 86:16016-16025. [PMID: 34342230 DOI: 10.1021/acs.joc.1c01024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An electrochemical Horner-Wadsworth-Emmons/hydrogenation tandem reaction was achieved using ammonia as electron and proton donors. The reaction could give two-carbon-elongated ester and nitrile from aldehyde or ketones directly. This reaction could proceed with a catalytic amount of base or even without a base. The ammonia provides both the electron and proton for this tandem reaction and enables the catalyst-free hydrogenation of an α,β-unsaturated HWE intermediate. More than 40 examples were reported, and functional groups, including heterocycles and hydroxyl, were tolerated.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Runze Jiang
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China.,State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
43
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
44
|
Long H, Huang C, Zheng YT, Li ZY, Jie LH, Song J, Zhu S, Xu HC. Electrochemical C-H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nat Commun 2021; 12:6629. [PMID: 34785664 PMCID: PMC8616953 DOI: 10.1038/s41467-021-26960-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C-H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C-H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds. The C-P bond is formed through the reaction of arenes with anodically generated P-radical cations, a class of reactive intermediates remained unexplored for synthesis despite intensive studies of P-radicals. The high reactivity of the P-radical cations coupled with the mild conditions of the electrosynthesis ensures not only efficient reactions of arenes of diverse electronic properties but also selective late-stage functionalization of complex natural products and bioactive compounds. The synthetic utility of the electrochemical method is further demonstrated by the continuous production of 55.0 grams of one of the phosphonate products.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, 361006, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
45
|
Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication. Nature 2021; 596:74-79. [PMID: 34157720 PMCID: PMC9632649 DOI: 10.1038/s41586-021-03717-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Aziridines-three-membered nitrogen-containing cyclic molecules-are important synthetic targets. Their substantial ring strain and resultant proclivity towards ring-opening reactions makes them versatile precursors of diverse amine products1-3, and, in some cases, the aziridine functional group itself imbues important biological (for example, anti-tumour) activity4-6. Transformation of ubiquitous alkenes into aziridines is an attractive synthetic strategy, but is typically accomplished using electrophilic nitrogen sources rather than widely available amine nucleophiles. Here we show that unactivated alkenes can be electrochemically transformed into a metastable, dicationic intermediate that undergoes aziridination with primary amines under basic conditions. This new approach expands the scope of readily accessible N-alkyl aziridine products relative to those obtained through existing state-of-the-art methods. A key strategic advantage of this approach is that oxidative alkene activation is decoupled from the aziridination step, enabling a wide range of commercially available but oxidatively sensitive7 amines to act as coupling partners for this strain-inducing transformation. More broadly, our work lays the foundations for a diverse array of difunctionalization reactions using this dication pool approach.
Collapse
|
46
|
Chung DS, Park SH, Lee SG, Kim H. Electrochemically driven stereoselective approach to syn-1,2-diol derivatives from vinylarenes and DMF. Chem Sci 2021; 12:5892-5897. [PMID: 34168814 PMCID: PMC8179677 DOI: 10.1039/d1sc00760b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
We have developed an electrochemically driven strategy for the stereoselective synthesis of protected syn-1,2-diols from vinylarenes with N,N-dimethylformamide (DMF). The newly developed system obviates the need for transition metal catalysts or external oxidizing agents, thus providing an operationally simple and efficient route to an array of protected syn-1,2-diols in a single step. This reaction proceeds via an electrooxidation of olefin, followed by a nucleophilic attack of DMF. Subsequent oxidation and nucleophilic capture of the generated carbocation with a trifluoroacetate ion is proposed, which gives rise predominantly to a syn-diastereoselectivity upon the second nucleophilic attack of DMF.
Collapse
Affiliation(s)
- Da Sol Chung
- Department of Chemistry and Nanoscience, Ewha Womans University 03760 Seoul Korea
| | - Steve H Park
- Department of Chemistry and Nanoscience, Ewha Womans University 03760 Seoul Korea
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University 03760 Seoul Korea
| | - Hyunwoo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University 03760 Seoul Korea
| |
Collapse
|
47
|
Neyt NC, Riley DL. Application of reactor engineering concepts in continuous flow chemistry: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00004g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the lines between chemistry and chemical engineering.
Collapse
Affiliation(s)
- Nicole C. Neyt
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| | - Darren L. Riley
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| |
Collapse
|
48
|
Liu F, Dai J, Cheng X. Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
|