• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4679296)   Today's Articles (2883)
For: Pan B, Jin H, Wang L, Qian B, Chen X, Huang S, Li J. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Number Cited by Other Article(s)
1
A Moving Window Double Locally Weighted Extreme Learning Machine on an Improved Sparrow Searching Algorithm and Its Case Study on a Hematite Grinding Process. Processes (Basel) 2023. [DOI: 10.3390/pr11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
2
Severino AGV, de Lima JMM, de Araújo FMU. Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach. SENSORS (BASEL, SWITZERLAND) 2022;22:s22186887. [PMID: 36146235 PMCID: PMC9505118 DOI: 10.3390/s22186887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/07/2023]
3
A Unified Just-in-Time Learning Paradigm and Its Application to Adaptive Soft Sensing for Nonlinear and Time-Varying Chemical Process. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Zhang Y, Jin H, Liu H, Yang B, Dong S. Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process. Polymers (Basel) 2022;14:polym14051018. [PMID: 35267845 PMCID: PMC8914694 DOI: 10.3390/polym14051018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]  Open
5
Li Z, Jin H, Dong S, Qian B, Yang B, Chen X. Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
6
Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
7
ZHOU C, WANG YJ, ZHU HQ, HUANG KK, LI YG. Quantitative analysis of trace metal ions concentration in purified liquid of zinc smelting using UV-vis spectrometry and EVC-ILWPLS method. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
8
Yuan X, Rao J, Gu Y, Ye L, Wang K, Wang Y. Online Adaptive Modeling Framework for Deep Belief Network-Based Quality Prediction in Industrial Processes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Moreira de Lima JM, Ugulino de Araujo FM. Ensemble deep relevant learning framework for semi-supervised soft sensor modeling of industrial processes. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
10
Li D, Huang D, Liu Y. A novel two-step adaptive multioutput semisupervised soft sensor with applications in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021;28:29131-29145. [PMID: 33550556 DOI: 10.1007/s11356-021-12656-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
11
Moreira de Lima JM, Ugulino de Araújo FM. Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant Representation Learning. SENSORS 2021;21:s21103430. [PMID: 34069123 PMCID: PMC8156853 DOI: 10.3390/s21103430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
12
Qiu K, Wang J, Zhou X, Guo Y, Wang R. Soft Sensor Framework Based on Semisupervised Just-in-Time Relevance Vector Regression for Multiphase Batch Processes with Unlabeled Data. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Wang J, Qiu K, Guo Y, Wang R, Zhou X. Soft sensor development based on improved just‐in‐time learning and relevant vector machine for batch processes. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
14
Liu K, Shao W, Chen G. Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development. ISA TRANSACTIONS 2020;103:143-155. [PMID: 32171594 DOI: 10.1016/j.isatra.2020.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
15
Ensemble Just-In-Time Learning-Based Soft Sensor for Mooney Viscosity Prediction in an Industrial Rubber Mixing Process. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6575326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
16
Mickel VM, Yeo WS, Saptoro A. Evaluating the Performance of Newly Integrated Model in Nonlinear Chemical Process Against Missing Measurements. CHEMICAL PRODUCT AND PROCESS MODELING 2019. [DOI: 10.1515/cppm-2018-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
17
Pan B, Jin H, Yang B, Qian B, Zhao Z. Soft Sensor Development for Nonlinear Industrial Processes Based on Ensemble Just-in-Time Extreme Learning Machine through Triple-Modal Perturbation and Evolutionary Multiobjective Optimization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA