1
|
Yao S, Ouyang S, Zhou Q, Tao Z, Chen Y, Zheng T. Environmental remediation and sustainable design of iron oxide nanoparticles for removal of petroleum-derived pollutants from water: A critical review. ENVIRONMENTAL RESEARCH 2024; 263:120009. [PMID: 39284490 DOI: 10.1016/j.envres.2024.120009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The global problem of major oil spills not only generates crude oil pollution, but produces many derivatives that pose ecological and human health challenges. While extensive research has focused on understanding the types of these contaminants, their transport modes, detection techniques, and ecotoxicological impacts, there are still significant research gaps in mechanisms for removal of petroleum-derived pollutants by iron oxide nanoparticles (IONPs). This work summarizes systematically the types and green synthesis of IONPs for the environmental remediation of various petroleum contaminants. We also provide comprehensive coverage of the excellent removal capacity and latest environmental remediation of IONPs-based materials (e.g., pristine, modified, or porous-supported IONPs materials) for the removal of petroleum-derived pollutants, potential interaction mechanisms (e.g., adsorption, photocatalytic oxidation, and synergistic biodegradation). A sustainable framework was highlighted in depth based on a careful assessment of the environmental impacts, associated hazards, and economic viability. Finally, the review provides an possible improvements of IONPs for petroleum-derived pollutants remediation and sustainable design on future prospect. In the current global environment of pollution reduction and carbon reduction, this information is very important for researchers to synthesize and screen suitable IONPs for the control and eradication of future petroleum-based pollutants with low environmental impact.
Collapse
Affiliation(s)
- Shuli Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
AL-Rajabi MM, Almanassra IW, Khalil AKA, Atieh MA, Laoui T, Khalil KA. Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil-Water Separations. Polymers (Basel) 2023; 15:4594. [PMID: 38232019 PMCID: PMC10708555 DOI: 10.3390/polym15234594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.
Collapse
Affiliation(s)
- Maha Mohammad AL-Rajabi
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
| | - Ismail W. Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Abdelrahman K. A. Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Abd Halim NS, Mohd Hizam S, Wan Suhaimi WMS, Ahmad Farid AS, Abd Rahman PNK, Wirzal MDH, Sambudi NS, Md Nordin NAH. Nylon 6,6 Waste Nanofiber Membrane for Produced Water Filtration: Experimental, Performance Modelling, Optimization and Techno-Economic Analysis. MEMBRANES 2023; 13:224. [PMID: 36837727 PMCID: PMC9959055 DOI: 10.3390/membranes13020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Produced water (PW) is a by-product of oil and gas extraction, of which it is deemed as the primary contributor of wastewater stream in oil production. Conventional treatment such as membrane separation is favoured due to its sustainability and cost effectiveness. On the other hand, oceanic litters such as abandoned fishing nets endangered the marine life ecosystem, despite of its potential to be raw material for fabrication of nanofiber membrane (NFM). This study explores the potential usage of electrospun nylon 6,6 waste NFM for treatment of real PW. In terms of modelling, it is found that feed concentration is the dominant factor with R2 of 0.94 for permeate concentration response and 0.91 for average flux response. Moreover, the optimized system with average flux of 216.5 L/m2h with low specific power consumption of ca. 0.09 kWh/m3 is proven to be economically feasible with less than 5% error from predicted model. As for technoeconomic analysis, it is found that permeate flux plays the major role in controlling total capital cost (CAPEX) and operating cost (OPEX) of the system. The lowest total CAPEX and OPEX to achieve 10 ppm of permeate concentration, also was found to be RM 3.7 M and RM/year 1660, hence proving the economic feasibility of the proposed system.
Collapse
Affiliation(s)
- Nur Syakinah Abd Halim
- Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Shafiq Mohd Hizam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | | | - Ahmad Syahmi Ahmad Farid
- Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | | | - Mohd Dzul Hakim Wirzal
- Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta Selatan 12220, Indonesia
| | - Nik Abdul Hadi Md Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| |
Collapse
|
4
|
Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers (Basel) 2023; 15:polym15030741. [PMID: 36772042 PMCID: PMC9920505 DOI: 10.3390/polym15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of water purification, membrane separation technology plays a significant role. Electrospinning has emerged as a primary method to produce nanofiber membranes due to its straightforward, low cost, functional diversity, and process controllability. It is possible to flexibly control the structural characteristics of electrospun nanofiber membranes as well as carry out various membrane material combinations to make full use of their various properties, including high porosity, high selectivity, and microporous permeability to obtain high-performance water treatment membranes. These water separation membranes can satisfy the fast and efficient purification requirements in different water purification applications due to their high filtration efficiency. The current research on water treatment membranes is still focused on creating high-permeability membranes with outstanding selectivity, remarkable antifouling performance, superior physical and chemical performance, and long-term stability. This paper reviewed the preparation methods and properties of electrospun nanofiber membranes for water treatment in various fields, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and other special applications. Lastly, various antifouling technologies and research progress of water treatment membranes were discussed, and the future development direction of electrospun nanofiber membranes for water treatment was also presented.
Collapse
|
5
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
6
|
Acylhydrazone-modified guar gum material for the highly effective removal of oily sewage. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Al-Ghafri B, Kyaw HH, Al-Abri M, Lau WJ. Performance Study of Novel PES Membrane using Electrospray Deposition Method for Organic Contaminants Separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
3D Printed and Conventional Membranes—A Review. Polymers (Basel) 2022; 14:polym14051023. [PMID: 35267846 PMCID: PMC8914971 DOI: 10.3390/polym14051023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Polymer membranes are central to the proper operation of several processes used in a wide range of applications. The production of these membranes relies on processes such as phase inversion, stretching, track etching, sintering, or electrospinning. A novel and competitive strategy in membrane production is the use of additive manufacturing that enables the easier manufacture of tailored membranes. To achieve the future development of better membranes, it is necessary to compare this novel production process to that of more conventional techniques, and clarify the advantages and disadvantages. This review article compares a conventional method of manufacturing polymer membranes to additive manufacturing. A review of 3D printed membranes is also done to give researchers a reference guide. Membranes from these two approaches were compared in terms of cost, materials, structures, properties, performance. and environmental impact. Results show that very few membrane materials are used as 3D-printed membranes. Such membranes showed acceptable performance, better structures, and less environmental impact compared with those of conventional membranes.
Collapse
|
10
|
A Survey on Nanotechnology-Based Bioremediation of Wastewater. Bioinorg Chem Appl 2022; 2022:5063177. [PMID: 35281330 PMCID: PMC8906965 DOI: 10.1155/2022/5063177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Rainwater discharge and human impacts produce wastewater, which is a contaminated type of water. Sediments also discharge phosphate into the water column when there is a lack of dissolved oxygen in the water. Through the manufacturing of environmentally benign nanoparticles, nanotechnology may reduce the amount of money spent by enterprises to remediate such contaminants. Because of their improved physiological, biochemical, and biomechanical qualities, nanoparticles are getting prominence. The importance of the global wastewater dilemma is discussed in this survey. The use of nanomaterials in heavy metal remediation (HMR) and wastewater treatment is covered in this survey. This paper also discusses the benefits of nanotechnology over traditional approaches in certain fields. This survey aims to gather together many recent studies on nanoparticle production and their benefits as adsorbents in the remediation of wastewater which have been done so far. The promising role of nanotechnology in wastewater remediation is surveyed in this research, which also discusses recent developments in nanotechnology-mediated remediation methods. This survey examines the vital potential of nanotechnology in wastewater treatment, as well as recent breakthroughs in nanotechnology-mediated treatment systems.
Collapse
|
11
|
Physicochemical characteristics of polysulfone nanofiber membranes with iron oxide nanoparticles via electrospinning. J Appl Polym Sci 2022. [DOI: 10.1002/app.51661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Hussin NH, Wahab RA, Elias N, Jacob AG, Zainal-Abidin MH, Abdullah F, Sulaiman NJ, Misson M. Electrospun Magnetic Nanocellulose-Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. MEMBRANES 2021; 11:972. [PMID: 34940473 PMCID: PMC8707156 DOI: 10.3390/membranes11120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
A novel greener MNC/PES membrane was developed through an electrospinning technique for lipase immobilization to catalyze the synthesis of ethyl valerate (EV). In this study, the covalent immobilization of Aspergillus oryzae lipase (AOL) onto an electrospun nanofibrous membrane consisting of magnetic nanocellulose (MNC) and polyethersulfone (PES) to produce EV was statistically optimized. Raman spectroscopy, Fourier-transform infrared spectroscopy: attenuated total reflection, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analysis (TGA), and differential thermal gravimetric (DTG) of MNC/PES-AOL demonstrated that AOL was successfully immobilized onto the fibers. The Taguchi design-assisted immobilization of AOL onto MNC/PES fibers identified that 1.10 mg/mL protein loading, 4 mL reaction volume, 250 rpm stirring rate, and 50 °C were optimal to yield 72.09% of EV in 24 h. The thermal stability of MNC/PES-AOL was improved by ≈20% over the free AOL, with reusability for up to five consecutive esterification cycles while demonstrating an exceptional half-life of 120 h. Briefly, the electrospun MNC/PES fibers that immobilized AOL showed promising applicability in yielding relatively good EV levels. This study suggests that using MNC as fillers in a PES to improve AOL activity and durability for a longer catalytic process could be a viable option.
Collapse
Affiliation(s)
- Nurul Hidayah Hussin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Nursyafiqah Elias
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Adikwu Gowon Jacob
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Department of Applied Chemistry, Federal University Dutsin-Ma (FUDMA), Dutsin-Ma P.M.B 5001, Katsina State, Nigeria
| | - Mohamad Hamdi Zainal-Abidin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Nurul Jannah Sulaiman
- Department of Bioprocess & Polymer Engineering, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
13
|
The Impacts of Iron Oxide Nanoparticles on Membrane Properties for Water and Wastewater Applications: a Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, Mohd Nor MZ, Azis RS, Umar AM. Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations. Polymers (Basel) 2021; 13:polym13193229. [PMID: 34641045 PMCID: PMC8512899 DOI: 10.3390/polym13193229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the years, the persistent occurrence of superfluous endocrine-disrupting compounds (EDCs) (sub µg L−1) in water has led to serious health disorders in human and aquatic lives, as well as undermined the water quality. At present, there are no generally accepted regulatory discharge limits for the EDCs to avert their possible negative impacts. Moreover, the conventional treatment processes have reportedly failed to remove the persistent EDC pollutants, and this has led researchers to develop alternative treatment methods. Comprehensive information on the recent advances in the existing novel treatment processes and their peculiar limitations is still lacking. In this regard, the various treatment methods for the removal of EDCs are critically studied and reported in this paper. Initially, the occurrences of the EDCs and their attributed effects on humans, aquatic life, and wildlife are systematically reviewed, as well as the applied treatments. The most noticeable advances in the treatment methods include adsorption, catalytic degradation, ozonation, membrane separation, and advanced oxidation processes (AOP), as well as hybrid processes. The recent advances in the treatment technologies available for the elimination of EDCs from various water resources alongside with their associated drawbacks are discussed critically. Besides, the application of hybrid adsorption–membrane treatment using several novel nano-precursors is carefully reviewed. The operating factors influencing the EDCs’ remediations via adsorption is also briefly examined. Interestingly, research findings have indicated that some of the contemporary techniques could achieve more than 99% EDCs removal.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Department of Food, Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Correspondence: ; Tel.: +60-1-82314746
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
| | - Rabaah Syahidah Azis
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi 650221, Nigeria;
| |
Collapse
|
15
|
Barati N, Husein MM, Azaiez J. Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Bahmani M, Zarghami S, Mohammadi T, Asadi AA, Khanlari S. PES
electrospun fibrous membrane for oily wastewater treatment: Fabrication condition optimization using response surface methodology. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marzieh Bahmani
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Soheil Zarghami
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Amir Atabak Asadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
- Petroleum Refining Technology Development Division Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Samaneh Khanlari
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|
17
|
Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118467] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Saad MS, Balasubramaniam L, Wirzal MDH, Abd Halim NS, Bilad MR, Md Nordin NAH, Adi Putra Z, Ramli FN. Integrated Membrane-Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. MEMBRANES 2020; 10:membranes10080184. [PMID: 32823511 PMCID: PMC7464365 DOI: 10.3390/membranes10080184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
The textile industry provides for the needs of people especially in apparel and household items. The industry also discharges dye-containing wastewater that is typically challenging to treat. Despite the application of the biological and chemical treatments for the treatment of textile wastewater, these methods have their own drawbacks such as non-environment friendly, high cost and energy intensive. This research investigates the efficiency of the celestine blue dye removal from simulated textile wastewater by electrocoagulation (EC) method using iron (Fe) electrodes through an electrolytic cell, integrated with nylon 6,6 nanofiber (NF) membrane filtration for the separation of the flocculants from aqueous water. Based on the results, the integrated system achieves a high dye removal efficiency of 79.4%, by using 1000 ppm of sodium chloride as the electrolyte and 2 V of voltage at a constant pH of 7 and 10 ppm celestine blue dye solution, compared to the standalone EC method in which only 43.2% removal was achieved. Atomic absorption spectroscopy analysis was used to identify the traces of iron in the residual EC solution confirming the absence of iron. The EC-integrated membrane system thus shows superior performance compared to the conventional method whereby an additional 10–30% of dye was removed at 1 V and 2 V using similar energy consumptions.
Collapse
Affiliation(s)
- Muhammad Syaamil Saad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| | - Lila Balasubramaniam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
- Correspondence:
| | - Nur Syakinah Abd Halim
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| | - Nik Abdul Hadi Md Nordin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| | - Zulfan Adi Putra
- PETRONAS Group Technical Solutions, Process Simulation and Optimization, Level 16, Tower 3, Kuala Lumpur Convention Center, Kuala Lumpur 50088, Malaysia;
| | - Fuad Nabil Ramli
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (M.S.S.); (L.B.); (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (F.N.R.)
| |
Collapse
|
19
|
Mulyati S, Muchtar S, Arahman N, Meirisa F, Syamsuddin Y, Zuhra Z, Rosnelly CM, Shamsuddin N, Mat Nawi NI, Wirzal MDH, Bilad MR, Takagi R, Matsuyama H. One-Pot Polymerization of Dopamine as an Additive to Enhance Permeability and Antifouling Properties of Polyethersulfone Membrane. Polymers (Basel) 2020; 12:E1807. [PMID: 32806565 PMCID: PMC7464200 DOI: 10.3390/polym12081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
This paper reports the fabrication of polyethersulfone membranes via in situ hydrogen peroxide-assisted polymerization of dopamine. The dopamine and hydrogen peroxide were introduced into the dope solution where the polymerization occurred, resulting in a single-step additive formation during membrane fabrication. The effectivity of modification was evaluated through characterizations of the resulting membranes in terms of chemical functional groups, surface morphology, porosity, contact angle, mechanical strength and filtration of humic acid solution. The results confirm that the polydopamine was formed during the dope solution mixing through peroxide-assisted polymerization as proven by the appearance of peaks associated OH and NH groups in the resulting membranes. The presence of polydopamine residual in the membrane matric enhances the pore properties in terms of size and porosity (by a factor of 10), and by lowering the hydrophilicity (from 69° to 53°) which leads to enhanced filtration flux of up to 217 L/m2 h. The presence of the residual polydopamine also enhances membrane surface hydrophilicity which improve the antifouling properties as shown from the flux recovery ratio of > 80%.
Collapse
Affiliation(s)
- Sri Mulyati
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Syawaliah Muchtar
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Friska Meirisa
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Yanna Syamsuddin
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Zuhra Zuhra
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Cut Meurah Rosnelly
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei;
| | - Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Mohd Dzul Hakim Wirzal
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-8501, Japan; (R.T.); (H.M.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-8501, Japan; (R.T.); (H.M.)
| |
Collapse
|
20
|
Aframehr WM, Molki B, Bagheri R, Heidarian P, Davodi SM. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Abd Halim NS, Wirzal MDH, Bilad MR, Md Nordin NAH, Adi Putra Z, Sambudi NS, Mohd Yusoff AR. Improving Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Produced Water Filtration via Solvent Vapor Treatment. Polymers (Basel) 2019; 11:polym11122117. [PMID: 31861059 PMCID: PMC6960844 DOI: 10.3390/polym11122117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 02/02/2023] Open
Abstract
Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).
Collapse
Affiliation(s)
- Nur Syakinah Abd Halim
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
- Correspondence:
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Nik Abdul Hadi Md Nordin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Zulfan Adi Putra
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | | |
Collapse
|