1
|
Li K, Wang L, Zhang L. Screening diluents to optimize cesium contaminant separation using t-BAMBP extractant. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135410. [PMID: 39098200 DOI: 10.1016/j.jhazmat.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The widespread use of nuclear energy has raised concerns about nuclear safety and radioactive waste management, particularly due to the release of radioactive cesium. This study investigates the use of t-BAMBP (4-tert-butyl-2-(α-methylbenzyl) phenol) for the extraction and separation of cesium from simulate high concentration cesium containing wastewater, focusing on the selection of suitable diluents to enhance the efficiency of the process. We performed a systematic study using density functional theory (DFT) calculations to evaluate the intrinsic properties and interactions of various common diluents with t-BAMBP. The diluents studied include aromatic hydrocarbons (benzene, toluene, xylene), alkanes (cyclohexane, hexane, heptane), and alcohols (hexanol, octanol). Our computational results revealed that cyclohexane is the most suitable diluent due to its moderate solvation-free energy, high nonpolarity, and optimal balance between solubility and reactivity. Experimental validation confirmed the computational findings. The cyclohexane-diluted t-BAMBP system achieved the highest cesium extraction efficiency of over 94 %, with a separation factor (βCs/K) of 767.67. Cyclohexane demonstrated the lowest toxicity and cost among the diluents evaluated, making it a safer and more economical choice for practical applications. The results of this study provide a comprehensive theoretical and experimental basis for the selection of diluents in the t-BAMBP extraction system, offering insights for the sustainable utilization of cesium resources and effective management of radioactive waste.
Collapse
Affiliation(s)
- Kaizhong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Wang
- College of Vanadium and Titanium, Panzhihua University, Sichuan 617000, China.
| | - Lei Zhang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Poe D, Seifert S, Servis MJ. Molecular-scale understanding of diluent effects on ligand assembly for metal ion separations. Phys Chem Chem Phys 2024; 26:14108-14121. [PMID: 38568739 DOI: 10.1039/d3cp05972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Use of metal-selective ligands in solvent extraction is instrumental in extraction of critical materials and recycling, yet, diluent effects on extraction performance are not well understood. Experimental and empirical solvent parameters have been proposed to correlate with extraction performance, but are often inadequate predictors. We follow the hypothesis that the diluents' primary influence on extraction efficiency is whether or not it hinders assembly of the bulky extracting ligands into a geometry necessary for metal complexation. This behavior is readily accessible with molecular dynamics (MD), where the atomistic description of molecules can be applied to arbitrary extractant-solvent molecules and their mixtures. Several simulated quantities are considered, from both pairwise and graph theoretical analyses, and compared to experimental distribution ratio data for americium extraction by TODGA in a series of inert, non-interacting diluents. These simple properties, especially the formation of closed triplets corresponding to the 3 : 1 ligand : metal stoichiometric solvate, suggest a potential predictive power of this approach. This methodology provides a path forward to comprehensively understand and predict diluent effects in more complex systems involving different extracting ligands and multi-component diluent mixtures.
Collapse
Affiliation(s)
- Derrick Poe
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
3
|
Kahar INS, Othman N, Noah NFM, Suliman SS. Recovery of copper and silver from industrial e-waste leached solutions using sustainable liquid membrane technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66445-66472. [PMID: 37101217 DOI: 10.1007/s11356-023-26951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Waste electrical and electronic equipment or e-waste has recently emerged as a significant global concern. This waste contains various valuable metals, and via recycling, it could become a sustainable resource of metals (viz. copper, silver, gold, and others) while reducing reliance on virgin mining. Copper and silver with their superior electrical and thermal conductivity have been reviewed due to their high demand. Recovering these metals will be beneficial to attain the current needs. Liquid membrane technology has appeared as a viable option for treating e-waste from various industries as a simultaneous extraction and stripping process. It also includes extensive research on biotechnology, chemical and pharmaceutical, environmental engineering, pulp and paper, textile, food processing, and wastewater treatment. The success of this process depends more on the selection of organic and stripping phases. In this review, the use of liquid membrane technology in treating/recovering copper and silver from industrial e-waste leached solutions was highlighted. It also assembles critical information on the organic phase (carrier and diluent) and stripping phase in liquid membrane formulation for selective copper and silver. In addition, the utilization of green diluent, ionic liquids, and synergist carrier was also included since it gained prominence attention latterly. The future prospects and challenges of this technology were also discussed to ensure the industrialization of technology. Herein, a potential process flowchart for the valorization of e-waste is also proposed.
Collapse
Affiliation(s)
- Izzat Naim Shamsul Kahar
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norasikin Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Norul Fatiha Mohamed Noah
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sazmin Sufi Suliman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
4
|
Separation of cobalt and nickel via solvent extraction with Cyanex-272: batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Milani SA, Zahakifar F. Stoichiometry and thermodynamics of cerium(IV) solvent extraction from sulfuric acid solutions by CYANEX 301. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|