1
|
Lin Z, Zhang D, Liu Y, Zhang Z, Zhao Z, Shao B, Wu R, Fang R, Yao J. CO 2/CH 4 separation performance of SiO 2/PES composite membrane prepared by gas phase hydrolysis and grafting coating in gas-liquid membrane contactor: A comparative study. Heliyon 2023; 9:e18760. [PMID: 37560639 PMCID: PMC10407752 DOI: 10.1016/j.heliyon.2023.e18760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The gas-liquid membrane contactor (GLMC) is a new and promising kind of gas separation technique, but still exhibits limitations, especially in membrane performance. In order to solve the above problems, we fabricated and characterized novel OH/SiO2/PES composite membranes using gas phase hydrolysis and graft coating methods, respectively. In the preparation process, whether to use alkali to pretreat the membrane was used as an evaluation index. The CO2/CH4 separation performance was tested using the modified OH/SiO2/PES hollow fiber membrane as the membrane contactor in GLMC. In the experiment, we conducted a single factor experiment with diethanolamine (DEA) as the adsorbent to analyze the effect of the flow rate and concentration of DEA on the separation of CO2/CH4. The collected gas had a CH4 content of 99.92% and a CO2 flux of 10.1059 × 10-3 mol m-2 s-1 while DEA at a concentration of 1 mol/L was flowing at a rate of 16 L/h. The highest separation factor occurred at this moment, which was 833.67. Overall, the CO2/CH4 separation performance in GLMC was enhanced with the use of the fluorinated OH/SiO2/PES composite membrane.
Collapse
Affiliation(s)
- Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dandan Zhang
- Harbin Institute of Technology Hospital, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhongming Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiying Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Shao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, PR China
| | - Rui Fang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| | - Jie Yao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| |
Collapse
|
2
|
Parametric and modelling study of H2O-induced plasticization in PEI-TFC membrane for gas dehydration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Zaliman S, Zakaria N, Ahmad A, Leo C. 3D-imprinted superhydrophobic polyvinylidene fluoride membrane contactor incorporated with CaCO3 nanoparticles for carbon capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Study on the Preparation and Properties of Talcum-Fly Ash Based Ceramic Membrane Supports. MEMBRANES 2020; 10:membranes10090207. [PMID: 32872262 PMCID: PMC7557749 DOI: 10.3390/membranes10090207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/03/2022]
Abstract
Ceramic membrane method for moisture recovery from flue gas of thermal power plants is of considerable interest due to its excellent selection performance and corrosion resistance. However, manufacturing costs of commercial ceramic membranes are still relatively expensive, which promotes the development of new methods for preparing low-cost ceramic membranes. In this study, a method for the preparation of porous ceramic membrane supports is proposed. Low-cost fly ash from power plants is the main material of the membrane supports, and talcum is the additive. The fabrication process of the ceramic membrane supports is described in detail. The properties of the supports were fully characterized, including surface morphology, phase composition, pore diameter distribution, and porosity. The mechanical strength of the supports was measured. The obtained ceramic membrane supports displays a pore size of about 5 μm and porosity of 37.8%. Furthermore, the water recovery performance of the supports under different operating conditions was experimentally studied. The experimental results show that the recovered water flux varies with operating conditions. In the study, the maximum recovered water flux reaches 5.22 kg/(m2·h). The findings provide a guidance for the ceramic membrane supports application of water recovery from flue gas.
Collapse
|