1
|
Qin Y, Zhang M, Zhang F, Ozer SN, Feng Y, Sun W, Zhao Y, Xu Z. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133780. [PMID: 38401213 DOI: 10.1016/j.jhazmat.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Chemically durable and effective adsorbents for radiotoxic TeOx2- (TeIV and TeVI) anions remain in great demand for contamination remediation. Herein, a low-cost iron-based metal-organic framework (MIL-101(Fe)) was used as an adsorbent to capture TeOx2- anions from contaminated solution with ultrafast kinetics and record-high adsorption capacity of 645 mg g-1 for TeO32- and 337 mg g-1 for TeO42-, outperforming previously reported adsorbents. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations confirmed that the capture of TeOx2- by MIL-101(Fe) was mediated by the unique C-O-Te and Fe-O-Te coordination bonds at corresponding optimal adsorption sites, which enabled the selective adsorption of TeOx2- from solution and further irreversible immobilization under the geological environment. Meanwhile, MIL-101(Fe) works steadily over a wide pH range of 4-10 and at high concentrations of competing ions, and it is stable under β-irradiation even at high dose of 200 kGy. Moreover, the MIL-101(Fe) membrane was fabricated to efficiently remove TeO32- ions from seawater for practical use, overcoming the secondary contamination and recovery problems in powder adsorption. Finally, the good sustainability of MIL-101(Fe) was evaluated from three perspectives of technology, environment, and society. Our strategy provides an alternative to traditional removal methods that should be attractive for Te contamination remediation.
Collapse
Affiliation(s)
- Yongbo Qin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fuhao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Seda Nur Ozer
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yujing Feng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Wenlong Sun
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yongming Zhao
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
2
|
Lindberg A, Diaz-Morales O, Holmin S, Cornell A. Sources of Oxygen Produced in the Chlorate Process Utilizing Dimensionally Stable Anode (DSA) Electrodes Doped by Sn and Sb. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandra Lindberg
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Oscar Diaz-Morales
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Susanne Holmin
- Permascand AB, Folkets Husvägen 50, 84 199 Ljungaverk, Sweden
| | - Ann Cornell
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Shmychkova O, Girenko D, Velichenko A. Cl
–
/ClO
–
process on SnO
2
‐based electrodes in low‐concentrated NaCl solutions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Olesia Shmychkova
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Dmitry Girenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Alexander Velichenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| |
Collapse
|