1
|
Mansor M, Budiman SN, Zainoodin AM, Khairunnisa MP, Yamanaka S, Jusoh NWC, Liza S. Candle Soot as a Novel Support for Nickel Nanoparticles in the Electrocatalytic Ethanol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1042. [PMID: 38921918 PMCID: PMC11206670 DOI: 10.3390/nano14121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The enhancement of carbon-supported components is a crucial factor in augmenting the interplay between carbon-supported and metal-active components in the utilization of catalysts for direct ethanol fuel cells (DEFCs). Here, we propose a strategy for designing a catalyst by modifying candle soot (CS) and loading nickel onto ordered carbon soot. The present study aimed to investigate the effect of the Ni nanoparticles content on the electrocatalytic performance of Ni-CS, ultimately leading to the identification of a maximum composition. The presence of an excessive quantity of nickel particles leads to a decrease in the number of active sites within the material, resulting in sluggishness of the electron transfer pathway. The electrocatalyst composed of nickel and carbon support, with a nickel content of 20 wt%, has demonstrated a noteworthy current activity of 18.43 mA/cm2, which is three times that of the electrocatalyst with a higher nickel content of 25 wt%. For example, the 20 wt% Ni-CS electrocatalytic activity was found to be good, and it was approximately four times higher than that of 20 wt% Ni-CB (nickel-carbon black). Moreover, the chronoamperometry (CA) test demonstrated a reduction in current activity of merely 65.80% for a 20 wt% Ni-CS electrocatalyst, indicating electrochemical stability. In addition, this demonstrates the great potential of candle soot with Ni nanoparticles to be used as a catalyst in practical applications.
Collapse
Affiliation(s)
- Muliani Mansor
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | - Siti Noorleila Budiman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | | | - Mohd Paad Khairunnisa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
- Department of Applied Science, Muroran Institute of Technology, Muroran 050-8585, Japan
- Tribology and Precision Machining i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Shinya Yamanaka
- Department of Applied Science, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | - Shahira Liza
- Tribology and Precision Machining i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| |
Collapse
|
2
|
Askari MB, Beitollahi H, Di Bartolomeo A. Methanol and Ethanol Electrooxidation on ZrO 2/NiO/rGO. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:679. [PMID: 36839047 PMCID: PMC9964513 DOI: 10.3390/nano13040679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Recently, transition metal oxides have been considered for various applications due to their unique properties. We present the synthesis of a three-component catalyst consisting of zirconium oxide (ZrO2), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO2/NiO/rGO by a simple one-step hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and bright-field transmission electron microscopy (BF-TEM) analyses were performed to accurately characterize the catalysts. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) analyses were also carried out to investigate the methanol and ethanol alcohol electrooxidation ability of the synthesized nanocatalysts. Inspired by the good potential of metal oxides in the field of catalysts, especially in fuel-cell anodes, we investigated the capability of this catalyst in the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). After proving the successful synthesis and examining the surface morphology of these materials, detailed electrochemical tests were performed to show the outstanding capability of this new nanocatalyst for use in the anode of alcohol fuel cells. ZrO2/NiO/rGO indicated a current density of 26.6 mA/cm2 at a peak potential of 0.52 V and 99.5% cyclic stability in the MOR and a current density of 17.3 mA/cm2 at a peak potential of 0.52 V and 98.5% cyclic stability in the EOR (at optimal concentration/scan rate 20 mV/s), representing an attractive option for use in the anode of alcoholic fuel cells.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and “Interdepartmental Center NANOMATES”, University of Salerno, Fisciano 84084, Salerno, Italy
| |
Collapse
|
3
|
Veerapandi G, Meenakshi S, Sekar C. Rapid detection of gingerol and thymol in medicinal foods based on Fe2O3 nanoparticles modified glassy carbon electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak İ, Sen F, Cheraghi S. An ultra-sensitive rifampicin electrochemical sensor based on Fe 3O 4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. CHEMOSPHERE 2022; 309:136566. [PMID: 36152837 DOI: 10.1016/j.chemosphere.2022.136566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to guide future sensor studies against other pharmaceutical drugs by synthesizing Fe3O4NPs@MWCNT metallic nanoparticles (NPs). Side damage caused by excessive accumulation of tuberculosis drugs in the body can cause clots in the organs, and cause serious damage such as heart attack and respiratory failure, and threaten human life. Therefore, the development of sensors sensitive to various antibiotics in this study is important for human health. In this study, the sensitivity of Fe3O4 NPs to tuberculosis drug (rifampicin) was evaluated by catalytic reaction using bare/GCE, MWCNT/GCE, and Fe3O4NPs@MWCNT/GCE electrodes. First of all, Fe3O4 NPs were successfully synthesized for the study and MWCNT/GCE and Fe3O4 NPs@MWCNT/GCE electrodes were formed with the modification of the MWCNT support material. It was observed that the Fe3O4 NPs@MWCNT/GCE electrode gave the highest signal against the other electrodes. The morphological structure of Fe3O4 NPs was determined by various characterization techniques such as Transmission Electron Microscopy (TEM), Fourier Transmission Infrared Spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and X-ray differential (XRD) and the obtained NPs were used for sensor studies, and it was observed that the current intensity increased as the scanning speed of each electrode increased in CV and DPV measurements. The average size of Fe3O4 NPs was found to be 7.32 ± 3.2 nm. Anodic current peaks occurred in the linear range of 2-25 μM. According to the results obtained from the measurements, the limit of detection (LOD) value was calculated as 0.64 μM limit of quantification (LOQ) 1.92 μM.
Collapse
Affiliation(s)
- Marzie Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - İdris Kaynak
- Department of Machinery and Metal Technologies, University of Usak, 64000, Usak, Turkiye
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye.
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
5
|
Zargazi M, Chahkandi M, Baghayeri M. New highly efficient 2D/1D HAp/g‒C 3N 4 photocatalyst thin film insight into crystal orientation and C‒vacancy effects. CHEMOSPHERE 2022; 303:135079. [PMID: 35623431 DOI: 10.1016/j.chemosphere.2022.135079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The novel synthetic Sol‒EPD process of a thin film including of well decorated g‒C3N4 nanotubes on plate‒like hydroxyapatite (HAp) were applied. Using Sol‒EPD designable method anisotropic growth of HAp nanocrystals on the substrate were achieved. It has provided the orientation of the different crystal facets resulted in the photogenerated O‒vacancy from phosphate groups. Based on the studied XRD pattern, EPD deposited film of HAp was oriented along c‒plane that can improve the photocatalytic activity of the designed composited film. Systematic designing was applied for decoration of g‒C3N4 nanotubes on the HAp under thermal condensation of melamine coincide with calcination of HAp. This new designed HAp/g‒C3N4 nanofilm was shown high photocatalytic efficiency and completely degradation of persistent pollutant of 4‒nitrophenol in the aqueous solution. According to the electrochemical impedance spectroscopy and current density studies, the higher charge separation/low charge recombination results were obtained for composited g‒C3N4/HAp nano‒film comparing with the single films of HAp and urchin like g‒C3N4. This high separation of charge pairs should be also assigned to the special designed morphology. In addition, wrapped like structure of g‒C3N4 nanotubes with C‒vacancy around HAp nanoplates play key role in separation of photo‒induced charge pairs, light diffusion, and high light harvesting within hollow nanotube. It can be highlighted that the composite degraded more than 95% of 4‒nitrophenol during 90 min that after 5 runs the photocatalytic activity was not significantly changed.
Collapse
Affiliation(s)
- Mahboobeh Zargazi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| | - Mahdi Baghayeri
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| |
Collapse
|
6
|
Jahani PM, Nejad FG, Dourandish Z, Zarandi MP, Safizadeh MM, Tajik S, Beitollahi H. A modified carbon paste electrode with N-rGO/CuO nanocomposite and ionic liquid for the efficient and cheap voltammetric sensing of hydroquinone in water specimens. CHEMOSPHERE 2022; 302:134712. [PMID: 35487364 DOI: 10.1016/j.chemosphere.2022.134712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This paper reports a voltammetric sensor based on copper oxide nanoparticles on nitrogen-doped reduced graphene oxide nanocomposite (N-rGO/CuO)-ionic liquid modified carbon paste electrode (N-rGO/CuO-ILCPE) for determining the hydroquinone (HQ). The N-rGO/CuO was prepared by a facile protocol, followed by characterization via fourier transform-infrared (FT-IR) patterns, field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) analysis. The electrochemical behaviour was linearly symmetrical to various hydroquinone levels (1.0-600.0 μM) with a narrow limit of detection (LOD = 0.25 μM). The diffusion coefficient was also estimated to be 4.1 × 10-6 cm2/s. The N-rGO/CuO-ILCPE was impressively applicable in determination of hydroquinone in the real specimens.
Collapse
Affiliation(s)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mostafa Poursoltani Zarandi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
7
|
Machine learning in hydrogen production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Mehrizi AA, Jafarzadeh H, Lashkenari MS, Naddafi M, Le VT, Tran VA, Dragoi EN, Vasseghian Y. Artificial neural networks modeling ethanol oxidation reaction kinetics catalyzed by polyaniline-manganese ferrite supported platinum-ruthenium nanohybrid electrocatalyst. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|