Zhang Q, Yang YL, Guo D, Hong JM. Cu
3(hexaamino triphenylhexane)
2/reduced graphene oxide composites with boosting electron-transfer properties for acetaminophen electrocatalytic degradation.
CHEMOSPHERE 2023;
338:139444. [PMID:
37442382 DOI:
10.1016/j.chemosphere.2023.139444]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Electron-transfer properties, as great contributors for electrocatalytic oxidation on the anode, are crucial to pollution degradation. The strong relationship between electron-transfer properties and active species (such as radicals) generation of anode catalysts suggests a new strategy for pollution-degradation efficiency improvement. In this study, a novel composite of Cu3(hexaamino triphenylhexane)2 [Cu3(HITP)2] and reduced graphene oxide (RGO) was synthesized to construct electron-transfer pathways between the two layers. Benefiting from the connection formed through RGO-O-N-Cu, the electron transfer from RGO to Cu3(HITP)2 was accelerated. The resettled charge distribution led the C atoms in the RGO layer, and the Cu and C atoms in Cu3(HITP)2 layer acted as the main surface active sites. O2•-, 1O2, and reactive chlorine were then triggered to boost the degradation of acetaminophen. The source of O2•- and 1O2 was more likely from surface oxygen groups rather than dissolved O2. Overall, this research provided a perspective proof of conductive Cu3(HITP)2/RGO composite construction with 2D/2D structure for electrocatalytic-oxidation improvement.
Collapse