1
|
Zheng L, Su B, Cui FP, Li D, Ma Y, Xing M, Tang L, Wang J, Tian Y, Zheng X. Long-Term Exposure to PM 2.5 Constituents, Genetic Susceptibility, and Incident Dementia: A Prospective Cohort Study among 0.2 Million Older Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4493-4504. [PMID: 39998422 DOI: 10.1021/acs.est.4c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fine particulate matter, known as PM2.5, is recognized as a risk factor for dementia. However, the specific linkage between PM2.5 constituents and dementia is not well understood. We conducted a cohort of 217,336 participants of the UK Biobank to explore the association of long-term exposure to PM2.5 constituents with all-cause dementia, Alzheimer's disease (AD), and vascular dementia. We estimated PM2.5 constituents based on residential addresses by an evaluation model and used time-varying Cox models and Quantile g-computation models to assess the effects of individual constituents and their mixtures. Genetic susceptibility to dementia was assessed using a polygenic risk score, and its multiplicative and additive interactions with PM2.5 constituents were analyzed. Our results showed that black carbon (BC), ammonium (NH4+), organic matter (OM), and sulfate (SO42-) were positively associated with all-cause dementia, while BC and OM were linked to AD, with BC being the most influential. The combined effect of PM2.5 constituents and genetic risk was stronger than their individual effect. This study offers new insights into the association between PM2.5 constituents and dementia, especially those from fuel combustion and automobile exhaust, and highlights the need for effective prevention strategies.
Collapse
Affiliation(s)
- Lei Zheng
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| | - Fei-Peng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Meiqi Xing
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| |
Collapse
|
2
|
Wu Y, Zhang Y, Wang J, Gan Q, Su X, Zhang S, Ding Y, Yang X, Zhang N, Wu K. Genetic evidence for the causal effects of air pollution on the risk of respiratory diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117602. [PMID: 39740427 DOI: 10.1016/j.ecoenv.2024.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Epidemiological studies have consistently demonstrated a robust association between long-term exposure to air pollutants and respiratory diseases. However, establishing causal relationships remains challenging due to residual confounding in observational studies. In this study, Mendelian randomization (MR) analysis was used to explore the causal and epigenetic relationships between various air pollutants and common respiratory diseases. METHODS We utilized a two-sample Mendelian randomization (TSMR) approach to explore the impact of PM2.5, PM2.5-10, PM10, NO2, and NOX on the incidence of nine respiratory diseases using data from large-scale European GWAS datasets (N = 423,796-456,380 for exposures; N = 162,962-486,484 for outcomes). The primary analytical method was inverse variance weighting (IVW), which explored the exposure-outcome relationship using single nucleotide polymorphisms (SNPs) associated with air pollution. Sensitivity analyses, including MR-Egger regression and leave-one-out analyses, were employed to ensure result consistency. Multivariate MR (MVMR) was performed to adjust for potential smoking-related confounders, such as cigarettes per day, household smoking, exposure to tobacco smoke at home, ever smoked, second-hand smoke, smoking initiation, and age at smoking initiation, as well as the independent effects of each air pollutant. Additionally, methylation and enrichment analyses were conducted to further elucidate the potential effects of air pollution on respiratory diseases. RESULTS TSMR analysis revealed that exposure to PM2.5 increased the risk of early-onset chronic obstructive pulmonary disease (COPD), pneumonia, pulmonary embolism and lung cancer. PM2.5-10 exposure was associated with an increased risk of lung cancer, while PM10 exposure increased the risk of pneumonia and bronchiectasis. NO2 exposure was associated with increased risks of lung cancer and adult asthma. Importantly, these associations remained robust even after controlling for potential tobacco-related confounders in the MVMR analyses. In the MVMR analysis adjusting for other pollutants, significant associations persisted between PM2.5 and early-onset COPD, and between PM10 and pneumonia. Genetic co-localization analyses confirmed that methylation of PM2.5-associated CpG loci (cg11386376 near c1orf175, cg11846064 near rfx2, cg18612040 near rptor, and cg19765378 near c7orf50) was associated with an increased risk of early-onset COPD. Finally, SNPs significantly associated with exposure and outcome were selected for enrichment analysis. CONCLUSIONS Our findings suggest that exposure to air pollutants may play a causal role in the development of respiratory diseases, with a potential role of epigenomic modifications emphasized. Strengthening comprehensive air pollution regulations by relevant authorities could potentially mitigate the risk of these diseases.
Collapse
Affiliation(s)
- Yanjuan Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Yuting Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Jingcun Wang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Qiming Gan
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Xiaofen Su
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Sun Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Yutong Ding
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Xinyan Yang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China
| | - Nuofu Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China.
| | - Kang Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China.
| |
Collapse
|
3
|
Alari A, Ranzani O, Milà C, Olmos S, Basagaña X, Dadvand P, Duarte-Salles T, Nieuwenhuijsen M, Tonne C. Long-term exposure to air pollution and lower respiratory infections in a large population-based adult cohort in Catalonia. ENVIRONMENT INTERNATIONAL 2025; 195:109230. [PMID: 39732111 DOI: 10.1016/j.envint.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Evidence is limited regarding the role of air pollution in acute lower respiratory infections among adults. We assessed the influence of long-term air pollution exposure on hospital admission for lower respiratory infections and whether there are vulnerable subgroups. METHODS We used a populational cohort in Catalonia, Spain, comprising 3,817,820 adults residing in Catalonia as of January 1, 2015. Air pollution exposure was assigned to individuaĺs residential address using locally-developed models. We characterized the concentration-response functions between long-term air pollution exposure and hospital admission for lower respiratory infections between 2015 and 2019. We assessed interaction between exposure and clinical and socio-economic factors on multiplicative and additive scales. RESULTS An interquartile range exposure increase was associated with an 8 % (95 % Confidence Interval: 5 %-11 %) for Nitrogen Dioxide, 10 % (95 % Confidence Interval: 8 %-13 %) for Particulate Matter with diameter equal to or smaller than 2.5 µm, 5 % (95 % Confidence Interval: 3 %-7%) for Particulate Matter with diameter equal to or smaller than 10 µm and 18 % (95 % Confidence Interval: 14 %-22%) for ozone (adjusted by Nitrogen Dioxide) increase in hospital admissions for respiratory infections. Concentration-response functions were non-linear, with steeper slopes at exposures below the median or at most extreme high values. Associations were consistently greater for individuals over 65 years or with hypertension diagnosis and males. CONCLUSIONS Long-term exposure to air pollution was positively associated with hospital admission for lower respiratory infections. Individuals who were older than 65 years, hypertensive or male were most vulnerable.
Collapse
Affiliation(s)
- Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
4
|
Hu S, Xue X, Xu J, Yin P, Meng X, Kan H, Chen R, Zhou M, Xu JF. Association of short-term exposure to ambient air pollution and temperature with bronchiectasis mortality: a nationwide time-stratified case-crossover study. EBioMedicine 2024; 110:105465. [PMID: 39577116 PMCID: PMC11617952 DOI: 10.1016/j.ebiom.2024.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Ambient pollution and non-optimal temperature are major risk factors for respiratory health. However, the relationships between short-term exposure to these factors and bronchiectasis mortality remain unknown. METHODS A nationwide, time-stratified case-crossover study across Mainland China was conducted from 2013 to 2019. Records of bronchiectasis deaths were extracted from the National Death Registration Reporting Information System. Daily concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM2.5-10), nitrogen dioxide (NO2), ozone (O3), and daily temperature were obtained from high-resolution prediction models. We utilized conditional logistic regression model and distributed lag nonlinear model to explore the associations of these exposures with bronchiectasis mortality. FINDINGS We included a total of 19,320 bronchiectasis deaths. Air pollutant was associated with bronchiectasis mortality within the first 3 days after exposure and the exposure-response relationships were almost linear. An interquartile range increase in PM2.5, PM2.5-10, and O3 was associated with increments of 3.18%, 4.14%, and 4.36% in bronchiectasis mortality at lag 02 d, respectively. Additionally, lower temperature was associated with higher odds of bronchiectasis mortality. Compared to referent temperature (23.6 °C), the odds ratio for bronchiectasis mortality associated with extremely low temperature (P1: -13.4 °C) was 1.54 (95% CI: 1.05, 2.25). INTERPRETATION This national study provides compelling evidence, and highlights the necessity and importance of reducing air pollution exposures and keeping warm for susceptible populations. FUNDING National Natural Science Foundation of China (81925001; 82330070); Innovation Program of Shanghai Municipal Education Commission (202101070007-E00097); Program of Shanghai Municipal Science and Technology Commission (21DZ2201800); Program of Shanghai Shenkang Development Center (SHDC12023110); and Major Project of National Health Commission of China.
Collapse
Affiliation(s)
- Shunlian Hu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jiayan Xu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Peng Yin
- National Centre for Chronic Non-communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Maigeng Zhou
- National Centre for Chronic Non-communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China; Centre of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Zheng L, Wang J, Tang L, Ma Y, Tian Y. Association of residential greenness with incident pneumonia: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173731. [PMID: 38838996 DOI: 10.1016/j.scitotenv.2024.173731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Residential greenness is considered beneficial to human health, and its association with respiratory function has been found in previous studies. However, its link with pneumonia remains unclear. To explore the association of residential greenness with incident pneumonia, we conducted a prospective cohort study based on participants of the UK Biobank, followed from 2006 to 2010 to the end of 2019. Residential greenness was measured by Normalized Difference Vegetation Index (NDVI) within 500 m and 1000 m buffer. Cox proportional hazard models were conducted to assess the association, and restricted cubic spline models were also constructed to estimate their exposure-response relationship. Results demonstrate that residential greenness was negatively related to the risk of incident pneumonia. An interquartile (IQR) increase in NDVI 500-m buffer was associated with 4 % [HR (95 % CI) =0.96 (0.94, 0.97), P < 0.001] lower risk of incident pneumonia. Compared to the lowest greenness quartile (Q1), the highest quartile (Q4) had a lower risk of incident pneumonia, with the HR (95 % CI) estimated to be 0.91 (0.87, 0.95) (P values <0.001). Analyses based on NDVI 1000-m buffer obtained similar results. Furthermore, a significant effect of modifications by age and income on the linkage between residential greenness and incident pneumonia was found. These findings propose a potential effective prevention of incident pneumonia and provide the scientific basis for promoting the construction of residential greenness.
Collapse
Affiliation(s)
- Lei Zheng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
6
|
Zhang J, Lim YH, So R, Mortensen LH, Napolitano GM, Cole-Hunter T, Tuffier S, Bergmann M, Maric M, Taghavi Shahri SM, Brandt J, Ketzel M, Loft S, Andersen ZJ. Long-Term Exposure to Air Pollution and Risk of Acute Lower Respiratory Infections in the Danish Nurse Cohort. Ann Am Thorac Soc 2024; 21:1129-1138. [PMID: 38513223 DOI: 10.1513/annalsats.202401-074oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024] Open
Abstract
Rationale: Air pollution is a major risk factor for chronic cardiorespiratory diseases, affecting the immune and respiratory systems' functionality, but epidemiological evidence in respiratory infections remains sparse. Objectives: We aimed to assess the association of long-term exposure to ambient air pollution with the risk of developing new and recurrent acute lower respiratory infections (ALRIs), characterized by persistently severe symptoms necessitating hospital contact, and identify the potential susceptible populations by socioeconomic status, smoking, physical activity status, overweight, and comorbidity with chronic lung disease. Methods: We followed 23,912 female nurses from the Danish Nurse Cohort (age >44 yr) from baseline (1993 or 1999) until 2018 for incident and recurrent ALRIs defined by hospital contact (inpatient, outpatient, and emergency room) data from the National Patient Register. Residential annual mean concentrations of fine particulate matter, nitrogen dioxide (NO2), and black carbon were modeled using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System. We used marginal Cox models with time-varying exposures to assess the association of 3-year running mean air pollution level with incident and recurrent ALRIs and examined effect modification by age, socioeconomic status, smoking, physical activity, body mass index, and comorbidity with asthma or chronic obstructive pulmonary disease (COPD). Results: During a 21.3-year mean follow-up, 4,746 ALRIs were observed, of which 2,553 were incident. We observed strong positive associations of all three pollutants with incident ALRIs, with hazard ratios and 95% confidence intervals of 1.19 (1.08-1.31) per 2.5 μg/m3 for fine particulate matter, 1.17 (1.11-1.24) per 8.0 μg/m3 for NO2, and 1.09 (1.05-1.12) per 0.3 μg/m3 for black carbon, and slightly stronger associations with recurrent ALRIs. Associations were strongest in patients with COPD and nurses with low physical activity. Conclusions: Long-term exposure to air pollution at low levels was associated with risks of new and recurrent ALRIs, with patients with COPD and physically inactive subjects most vulnerable.
Collapse
Affiliation(s)
| | | | - Rina So
- Section of Environmental Health and
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Denmark Statistic, Copenhagen, Denmark
| | | | | | | | | | | | | | - Jørgen Brandt
- Department of Environmental Science and
- iClimate, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark; and
| | - Matthias Ketzel
- Department of Environmental Science and
- Global Centre for Clean Air Research, University of Surrey, Guildford, United Kingdom
| | | | | |
Collapse
|
7
|
Yang H, Wang Z, Zhou Y, Gao Z, Xu J, Xiao S, Dai C, Wu F, Deng Z, Peng J, Ran P. Association between long-term ozone exposure and readmission for chronic obstructive pulmonary disease exacerbation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123811. [PMID: 38531467 DOI: 10.1016/j.envpol.2024.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
The relationship between long-term ozone (O₃) exposure and readmission for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains elusive. In this study, we collected individual-level information on AECOPD hospitalizations from a standardized electronic database in Guangzhou from January 1, 2014, to December 31, 2015. We calculated the annual mean O₃ concentration prior to the dates of the index hospitalization for AECOPD using patients' residential addresses. Employing Cox proportional hazards models, we assessed the association between long-term O₃ concentration and the risk of AECOPD readmission across several time frames (30 days, 90 days, 180 days, and 365 days). We estimated the disease and economic burden of AECOPD readmissions attributable to O₃ using a counterfactual approach. Of the 4574 patients included in the study, 1398 (30.6%) were readmitted during the study period, with 262 (5.7%) readmitted within 30 days. The annual mean O₃ concentration was 90.3 μg/m3 (standard deviation [SD] = 8.2 μg/m3). A 10-μg/m3 increase in long-term O₃ concentration resulted in a hazard ratio (HR) for AECOPD readmission within 30 days of 1.28 (95% confidence interval [CI], 1.09 to 1.49), with similar results for readmission within 90, 180, and 365 days. Older patients (aged 75 years or above) and males were more susceptible (HR, 1.33; 95% CI, 1.10-1.61 and HR, 1.29; 95% CI, 1.09-1.53, respectively). The population attributable fraction for 30-day readmission due to O₃ exposure was 29.0% (95% CI, 28.4%-30.0%), and the attributable mean cost per participant was 362.3 USD (354.5-370.2). Long-term exposure to elevated O₃ concentrations is associated with an increased risk of AECOPD readmission, contributing to a significant disease and economic burden.
Collapse
Affiliation(s)
- Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zhaosheng Gao
- Guangzhou Health Technology Appraisal and Talent Evaluation Center, Guangzhou Municipal Health Commission, Guangzhou, China
| | - Jing Xu
- Guangzhou Health Technology Appraisal and Talent Evaluation Center, Guangzhou Municipal Health Commission, Guangzhou, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Longgang District Central Hospital, Shenzhen, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, Postcode, China; Guangzhou National Laboratory, Guangzhou, Guangdong, Postcode, China.
| |
Collapse
|
8
|
Sack C, Attia EF. What Can Big Data Teach Us About Air Pollution and Pneumonia? Chest 2023; 164:6-7. [PMID: 37423698 DOI: 10.1016/j.chest.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Coralynn Sack
- Department of Medicine, University of Washington, Seattle, WA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA.
| | - Engi F Attia
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|