1
|
Huang G, Miao H, Chen Y, Wang K, Zhang Q, Yang Z. Spraying humic acid regulator on cultivated Codonopsis pilosula (Franch.) Nannf. to improve yield of active constituents. FRONTIERS IN PLANT SCIENCE 2024; 15:1381182. [PMID: 38872877 PMCID: PMC11169936 DOI: 10.3389/fpls.2024.1381182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Plant growth regulators have been used in the cultivation of medicinal plants to increase yield, but the existing regulators decreased the content of active constituents which benefit human health. Therefore, it is necessary to find a new growth regulator to achieve the win-win goal of increasing yield and improving active constituents' accumulation. The potential of replacing chlorocholine chloride with a new humic acid-based growth regulator was evaluated by measuring the yield and active constituents' accumulation of Codonopsis pilosula. Three treatments including water (CK), chlorocholine chloride (T1) and humic acid regulator (T2) were applied by foliar spraying. Among them, both chlorocholine chloride and humic acid regulator belong to biostimulant. The result showed that the root yield in T1 and T2 were significantly increased by 59.1% and 54.9% compared with CK, respectively, and there was no significant difference between T1 and T2. Compared with CK, the yields of lobetyolin, syringin and atractylenolide III of Codonopsis pilosula were significantly decreased by 6.3%, 7.3% and 13.0% in T1, but were significantly increased by 22.8%, 14.8% and 32.0% in T2, respectively. Redundancy analyses showed that photosynthetic rate, sucrose phosphoric acid synthetase and phosphomannomutase had higher degree of explanation for yield and quality. Linear regression results indicated that photosynthetic rate and phosphomannomutase were the main factors to affect yield and active constituents yields, respectively. In addition, the output-input ratios based on the yields of polysaccharides, lobetyolin, syringin and atractylenolide III of Codonopsis pilosula in T2 was significantly increased by 6.5%, 15.2%, 8.7% and 31.2% respectively as compared with T1. Overall, compared with water treatment, both chlorocholine chloride and humic acid regulator treatments can increase the root yield of Codonopsis pilosula. Compared with chlorocholine chloride, humic acid regulator can improve the yield of active constituents and economic benefits of Codonopsis pilosula. This study indicated that reasonable selection of plant growth regulators is of great significance for achieving a win-win goal of increasing the root yield and active constituents of medicinal plants.
Collapse
Affiliation(s)
- Gaojian Huang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Huifeng Miao
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Yaqian Chen
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Ke Wang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Qiang Zhang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhiping Yang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Wang SS, Zhang T, Wang L, Dong S, Wang DH, Li B, Cao XY. The Dynamic Changes in the Main Substances in Codonopsis pilosula Root Provide Insights into the Carbon Flux between Primary and Secondary Metabolism during Different Growth Stages. Metabolites 2023; 13:metabo13030456. [PMID: 36984896 PMCID: PMC10057730 DOI: 10.3390/metabo13030456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The dried root of Codonopsis pilosula (Franch.) Nannf., referred to as Dangshen in Chinese, is a famous traditional Chinese medicine. Polysaccharides, lobetyolin, and atractylenolide III are the major bioactive components contributing to its medicinal properties. Here, we investigated the dynamic changes of the main substances in annual Dangshen harvested at 12 time points from 20 May to 20 November 2020 (from early summer to early winter). Although the root biomass increased continuously, the crude polysaccharides content increased and then declined as the temperature fell, and so did the content of soluble proteins. However, the content of total phenolics and flavonoids showed an opposite trend, indicating that the carbon flux was changed between primary metabolism and secondary metabolism as the temperature and growth stages changed. The changes in the contents of lobetyolin and atractylenolide III indicated that autumn might be a suitable harvest time for Dangshen. The antioxidant capacity in Dangshen might be correlated with vitamin C. Furthermore, we analyzed the expression profiles of a few enzyme genes involved in the polysaccharide biosynthesis pathways at different growth stages, showing that CpUGpase and CPPs exhibited a highly positive correlation. These results might lay a foundation for choosing cultivars using gene expression levels as markers.
Collapse
Affiliation(s)
- Sheng-Song Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Long Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Shuai Dong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Dong-Hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
- Institute of Botany of Shaanxi Province, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | - Xiao-Yan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
An Q, Sun H, Wu L, Liu L, Chen S. Quality evaluation of Codonopsis Radix through high performance liquid chromatography fingerprint combined with chemometrics and simultaneous determination of five characteristic ingredients. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Codonopsis Radix (CR) is recorded as the roots of Codonopsis pilosula, C. pilosula var. modesta and Codonopsis tangshen. It is difficult to evaluate the quality of CR because of the existence of many original plants. In this paper, a strategy integrating chromatographic analysis and chemometrics for the quality control of CR is proposed. Systematic analysis of the chemical composition of CR was achieved through high performance liquid chromatography (HPLC) fingerprinting. Based on the HPLC fingerprinting data, chemometrics, including unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares-discrimination analysis (OPLS-DA), were applied to classify all CR samples. Components with variable importance in projection values higher than 1 in the OPLS-DA model were selected as potential chemical markers for distinguishing the origins of CR. Finally, an HPLC method was validated for determining the five characteristic ingredients in the CR samples. HPLC characteristic fingerprints showed 17 common peaks for C. pilosula, 13 for C. pilosula var. modesta, and 9 for C. tangshen, and all of them showed good similarity (>0.9). Additionally, there were 9 common peaks for all CR samples with relatively poor similarity, ranging from 0.607 to 0.970. PCA could differentiate CR from the three origins, except for a partial overlap between C. pilosula and C. pilosula var. Modesta, and the OPLS-DA model achieved excellent classification results. Eight components (peaks 12, 8, lobetyolin, 10, codonopsin І, syringin, 3, and 11) were selected as potential chemical markers. There was a large discrepancy in the contents of the five characteristic ingredients in all samples, with the relative standard deviation ranging from 36.0% (lobetyolin) to 85.9% (atractylenolide Ⅲ). The average contents of the five characteristic ingredients were similar between C. pilosula and C. pilosula var. modesta samples and notably higher than those of C. tangshen samples. Consequently, a rapid, precise, and feasible strategy was established for the discrimination and quality control of CR with different origins.
Collapse
Affiliation(s)
- Qi An
- School of Pharmacy, Shanxi Health Vocational College, 100 Wenjin Street, Jinzhong 030619, Shanxi Province, PR China
| | - Hong Sun
- School of Pharmacy, Shanxi Health Vocational College, 100 Wenjin Street, Jinzhong 030619, Shanxi Province, PR China
| | - Linzhi Wu
- School of Pharmacy, Shanxi Health Vocational College, 100 Wenjin Street, Jinzhong 030619, Shanxi Province, PR China
| | - Liangliang Liu
- School of Pharmacy, Shanxi Health Vocational College, 100 Wenjin Street, Jinzhong 030619, Shanxi Province, PR China
| | - Sue Chen
- School of Pharmacy, Shanxi Health Vocational College, 100 Wenjin Street, Jinzhong 030619, Shanxi Province, PR China
| |
Collapse
|
4
|
An Integrated Strategy of Chemical Fingerprint and Network Pharmacology for the Discovery of Efficacy-Related Q-Markers of Pheretima. Int J Anal Chem 2022; 2022:8774913. [PMID: 36245784 PMCID: PMC9553678 DOI: 10.1155/2022/8774913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pheretima, one of the animal-derived traditional Chinese medicines, has been wildly used in various cardiovascular and cerebrovascular diseases, including stroke, coronary heart disease, hyperlipidemia, and hyperglycemia. However, it was still a big challenge to select the quality markers for Pheretima quality control. The fingerprint and network pharmacology-based strategy was proposed to screen the efficiency related quality markers (Q-Markers) of Pheretima. The ratio of sample to liquid, ultrasonic-extraction time, temperature, and power were optimized by orthogonal design, respectively. The chemical fingerprint of forty batches of Pheretima was established, and six common peaks were screened. The network pharmacology was used to construct the Pheretima-Components-Targets-Pathways-Stroke network. It was found that six potential efficacy Q-markers in Pheretima could exert the relaxing meridians effect to treat stroke through acting on multiple targets and regulating various pathways. A simple HPLC-DAD method was developed and validated to determine the efficacy Q-markers. Grey relational analysis was used to further verify the relation of potential efficiency related quality markers with the anticoagulation activity of Pheretima, which indicated that the contents of these markers exhibited high relationship with the anticoagulation activity. It was concluded that hypoxanthine, uridine, phenylalanine, inosine, guanosine, and tryptophan were selected as quality markers related to relaxing meridians to evaluate the quality of Pheretima. The fingerprint and network pharmacology-based strategy was proved to be a powerful strategy for the discovery of efficiency related Q-markers of Pheretima.
Collapse
|
5
|
Zhou G, Feng YM, Li ZC, Tao LY, Kong WS, Xie RF, Zhou X. Fingerprinting and Determination of Hepatotoxic Constituents in Polygoni Multiflori Radix Praeparata of Different Producing Places by HPLC. J Chromatogr Sci 2021; 60:440-449. [PMID: 34240129 DOI: 10.1093/chromsci/bmab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Polygoni Multiflori Radix Praeparata (PMRP) is used as Chinese herbal medicine with long history. However, reports about PMRP hepatotoxicity have increased recently, and producing area might be one reason. This article aims to figure out the relationship between producing area and hepatotoxic ingredients in PMRP. HPLC fingerprint for PMRP was established and the contents of gallic acid, trans-stilbene glycoside (TSG), emodin-8-O-β-D-glucoside (EG), emodin and physcion were determined. Clustering heatmap was implemented by TCMNPAS software,and principal component analysis was implemented by SPSS and SIMCA-P software. Hepatotoxic constituents' contents of PMRP from separate producing area were different. PMRP from Guangxi had the highest content of gallic acid, TSG, EG, emodin and physcion, followed by Hubei, Guangdong, Guizhou, Yunnan. PMRP from Henan had the lowest contents of hepatotoxic components. Hepatotoxic components' contents of PMRP in southern were higher than central China. This study carried out a preliminary qualitative and quantitative investigation on the PMRP from different producing places, which provided a basis for safe medication of PMRP.
Collapse
Affiliation(s)
- Gui Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Yi-Ming Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Zhi-Cheng Li
- Pudong Hospital, Fudan University, Gongwei Road, Pudong New District, Shanghai 201300, China
| | - Li-Yu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New District, Shanghai 201203, China
| | - Wei-Song Kong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Rui-Fang Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Xin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
6
|
Bailly C. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen). NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:143-153. [PMID: 33161560 PMCID: PMC7981376 DOI: 10.1007/s13659-020-00283-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 05/13/2023]
Abstract
Lobetyolin (LBT) is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codonopsis pilosula, known as Radix Codonopsis or Dangshen. Twelve traditional Chinese medicinal preparations containing Radix Codonopsis were identified; they are generally used to tonify spleen and lung Qi and occasionally to treat cancer. Here we have reviewed the anticancer properties of Codonopsis extracts, LBT and structural analogs. Lobetyolin and lobetyolinin are the mono- and bis-glucosylated forms of the polyacetylenic compound lobetyol. Lobetyol and LBT have shown activities against several types of cancer (notably gastric cancer) and we examined the molecular basis of their activity. A down-regulation of glutamine metabolism by LBT has been evidenced, contributing to drug-induced apoptosis and tumor growth inhibition. LBT markedly reduces both mRNA and protein expression of the amino acid transporter Alanine-Serine-Cysteine Transporter 2 (ASCT2). Other potential targets are proposed here, based on the structural analogy with other anticancer compounds. LBT and related polyacetylene glycosides should be further considered as potential anticancer agents, but more work is needed to evaluate their efficacy, toxicity, and risk-benefit ratio.
Collapse
|