1
|
Lin S, Ma H, Zhang S, Fan W, Shen C, Chen J, Jin M, Li K, He Q. The combination of paeonol, diosmetin-7- O- β- D-glucopyranoside, and 5-hydroxymethylfurfural from Trichosanthis pericarpium alleviates arachidonic acid-induced thrombosis in a zebrafish model. Front Pharmacol 2024; 15:1332468. [PMID: 38487165 PMCID: PMC10937350 DOI: 10.3389/fphar.2024.1332468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Trichosanthis fruit (TF) is a classic medicinal material obtained from Shandong, China. The peel of this fruit (Trichosanthis pericarpium, TP) is known to exert anti-thrombotic effects. However, the anti-thrombotic active components and mechanisms of TP have yet to be fully elucidated. Combined with zebrafish models and high-performance liquid chromatography (HPLC), this study evaluated the endogenous anti-thrombotic effects with the combination of three compounds from TP. First, we used HPLC to investigate the components in the water extract of TP. Next, we used the zebrafish model to investigate the anti-thrombotic activity of the three compound combinations by evaluating a range of indicators. Finally, the expression of related genes was detected by real-time quantitative polymerase chain reaction (qPCR). HPLC detected a total of eight components in TP water extract, with high levels of paeonol (Pae), diosmetin-7-O-β-D-glucopyranoside (diosmetin-7-O-glucoside), and 5-hydroxymethylfurfural (5-HMF). The most significant anti-thrombotic activity was detected when the Pae: diosmetin-7-O-glucoside:5-HMF ratio was 4:3:3. qPCR analysis revealed that the abnormal expression levels of f2, fga, fgb, vwf, ptgs1, and tbxas1 induced by arachidonic acid (AA) were improved. The combination of Pae, diosmetin-7-O-glucoside, and 5-HMF may alleviate AA-induced thrombosis by inhibiting the inflammatory reaction, coagulation cascade reaction, and arachidonic acid metabolism pathways.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiayu Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Huang Y, Chen Q, Pan W, Zhang Y, Li J, Xue X, Lei X, Wang S, Meng J. Moutan cortex exerts blood-activating and anti-inflammatory effects by regulating coagulation-inflammation cascades pathway in cells, rats and zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117398. [PMID: 37981122 DOI: 10.1016/j.jep.2023.117398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, raw Moutan Cortex (RMC) has been used in clinical practice for thousands of years. However, its blood-cooling and blood-activating medicinal effects as well as the underlying mechanisms have not been preliminarily verified until recent years. AIM OF THE STUDY Our group's previous network pharmacological studies suggested that RMC might exert its blood-activating and anti-inflammatory effects by modulating the coagulation-inflammation cascade pathway. Therefore, the present study aimed to further investigate the mechanisms relevant to the blood-activating and anti-inflammatory effects of RMC so as to provide more robust data supporting its clinical application. MATERIALS AND METHODS The inflammation and coagulation models of human umbilical vein endothelial cells (HUVECs) were induced by TNF-α; The rat models with blood-heat and blood-stasis syndrome (BHS) were constructed by ice-water bath with a combined use of epinephrine hydrochloride and dried yeast; The thrombus models of zebrafish were induced by arachidonic acid, and the inflammation models were established using LPS and CuSO4. The regulatory effects of RMC on the key targets in the pathway of the coagulation-inflammation cascade were investigated by combining ELISA, RT-PCR, and western blot techniques in an attempt to provide multiple validations concerning RMC's pharmacological efficacy and mechanism associated with cooling blood and activating blood circulation. RESULT The findings from the pharmacodynamic research demonstrated that RMC could inhibit the coagulation and inflammation process of HUVECs. Besides, it lowered the anal temperature and whole blood viscosity in BHS rats in addition to a prolongation of their prothrombin time (PT), thrombin time (TT), and activated partial thromboplastin time (APTT). Successfully constrained thrombotic area and reduced inflammatory cell counts were also observed in zebrafish models. Meanwhile, ELISA, RT-PCR and WB showed that RMC were capable of inhibiting the factors related to coagulation-MARK inflammation pathway-FⅡ, TF, FⅦ, FⅧ, FⅩ, and PAI, as well as down-regulating the expression of IL-6, COX-2, iNOS, TNF-α, ERK, JNK and p38. CONCLUSION RMC exerts blood-activating and anti-inflammatory effects through regulating the target genes of the coagulation-MARK inflammation cascade pathway.
Collapse
Affiliation(s)
- Yuting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Qianru Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Weijie Pan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiasheng Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Xingyang Xue
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xinhe Lei
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Guangzhou, 510006, China; Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Z, Vong CT, Zhang T, Yao C, Wang Y, Luo H. Quality evaluation methods of chinese medicine based on scientific supervision: recent research progress and prospects. Chin Med 2023; 18:126. [PMID: 37777788 PMCID: PMC10543864 DOI: 10.1186/s13020-023-00836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Traditional Chinese medicine (TCM) is increasingly getting attention worldwide, as it has played a very satisfactory role in treating COVID-19 during these past 3 years, and the Chinese government highly supports the development of TCM. The therapeutical theory and efficacies of Chinese medicine (CM) involve the safety, effectiveness and quality evaluation of CM, which requires a standard sound system. Constructing a scientific and reasonable CM quality and safety evaluation system, and establishing high-quality standards are the key cores to promote the high-quality development of CM. Through the traditional quality control methods of CM, the progress of the Q-marker research and development system proposed in recent years, this paper integrated the research ideas and methods of CM quality control and identified effective quality parameters. In addition, we also applied these effective quality parameters to create a new and supervision model for the quality control of CM. In conclusion, this review summarizes the methods and standards of quality control research used in recent years, and provides references to the quality control of CM and how researchers conduct quality control experiments.
Collapse
Affiliation(s)
- Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin, 300462, People's Republic of China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, 530001, People's Republic of China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, People's Republic of China.
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
4
|
Zhang J, Wang W, Li P, Li Z, Hao L, Zhang X, Ru S. Bisphenol S induces cardiovascular toxicity by disturbing the development of the common cardinal vein and myocardial contractility in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106294. [PMID: 36116344 DOI: 10.1016/j.aquatox.2022.106294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely used as a substitute for bisphenol A in industrial manufacturing. However, the safety of BPS is controversial, and the mechanism by which BPS exerts cardiovascular toxicity remains unclear. In this study, zebrafish embryos, including wild-type zebrafish and transgenic (flk1:eGFP), (gata1:DsRed) and (cmlc2:eGFP) zebrafish at 2 h postfertilization (hpf), were exposed to BPS at concentrations of 1, 10 and 100 μg/L for 24, 48 and 72 h, respectively. The data showed that BPS accelerated the expansion of the common cardinal vein and inhibited lumen formation between 24 hpf and 72 hpf. Moreover, low-dose BPS disturbed cardiac muscle contraction by breaking the calcium balance in cardiac muscle cells according to the RNA-seq results. As a consequence, increased heart rate and irregular blood circulation were observed in the BPS treatment groups. This result suggested that BPS at environmental relevant concentrations caused cardiovascular toxicity during the development of zebrafish embryos, possibly being an important inducer of cardiovascular injury later in life. These findings provide insight into the rational and safe application of BPS.
Collapse
Affiliation(s)
- Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peng Li
- Shandong Gold Group Co., Ltd, Jinan 250100, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|