1
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Duan WQ, Cai MC, Ma QQ, Huang P, Zhang JH, Wei TF, Shang D, Leng AJ, Qu JL. Exploring the chemical components of Kuanchang-Shu granule and its protective effects of postoperative ileus in rats by regulating AKT/HSP90AA1/eNOS pathway. Chin Med 2024; 19:29. [PMID: 38383512 PMCID: PMC10880223 DOI: 10.1186/s13020-024-00892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Postoperative ileus (POI) is a common obstruction of intestinal content passage caused by almost all abdominal operations that seriously strokes the quality of life of patients. Kuanchang-Shu granule (KCSG), a classic modified prescription based on "Da-Cheng-Qi Decoction", has obtained satisfactory efficacy in the clinical therapeutics of POI. However, its material basis and holistic molecular mechanism against POI have not been revealed. METHODS The chemical ingredients of KCSG were first characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Subsequently, an integration strategy of the network pharmacology and molecular docking based on above identified ingredients was performed to unveil the potential targets involved in the treatment of KCSG on POI. Finally, intestinal manipulation induced rat POI model was constructed to verify the efficacy and predicted mechanism of KCSG against POI. RESULTS In total, 246 ingredients mainly including organic acids, flavonoids, quinones, alkaloids, terpenoids, phenylpropanoids and phenols were identified. 41 essential ingredients, 24 crucial targets as well as 15 relevant signaling pathways were acquired based on network pharmacology analysis. Pharmacodynamic research showed that KCSG treatment could protect intestinal histological damage, promote the recovery of measurement of gastrointestinal transit disorder and inhibit the secretion of myeloperoxidase in the distal ileum tissues. The up-regulated expression of p-AKT and down-regulated expression of p-eNOS and HSP9OAA1 predicted by molecular docking and validated by western blotting showed that AKT/eNOS/HSP90AA1 pathway may be one of the crucial mechanisms that mediates the protective effect of KCSG.
Collapse
Affiliation(s)
- Wen-Qian Duan
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Ming-Chen Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Qi-Qi Ma
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Peng Huang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Jia-Hui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Tian-Fu Wei
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Ai-Jing Leng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Jia-Lin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
3
|
Zhang X, Wen X, Zhou D, Liang Y, Zhou Z, Chen G, Li W, Gao H, Li N. Lycibarbarspermidine L from the fruit of Lycium barbarum L. recovers intestinal barrier damage via regulating miR-195-3p. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117419. [PMID: 37977423 DOI: 10.1016/j.jep.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Lycium barbarum L. is widely employed with the traditional effect of tonic properties. According to the theory of traditional Chinese medicine, Gou Qi can be distributed in the meridian of stomach, as well as the liver and kidney, indicating its effect on the digestive system. Clinical studies found that Gou Qi enhanced gastrointestinal functions. Pharmacological research showed the extract of Lycium barbarum exhibiting a repaired effect on the intestine barrier. Lycibarbarspermidine L (LBS L), which belongs to polyamines, is separated from the fruit of Lycium barbarum. However, it is unknown whether LBS L can restore damaged intestinal barrier like other polyamines such as spermidine. AIM OF THE STUDY To elucidate the recovery effect of LBS L on damaged intestinal epithelium and its miRNA-related mechanism. MATERIALS AND METHODS IEC-6 cells were used in vitro to assess the therapeutic effect of LBS L on the injured intestine and the regulation of miR-195-3p. Spermidine (SPD) with intestinal mucosal repair effect was used as a positive control. Sprague Dawley (SD) rats were subjected to 48 h fasting to induce intestinal epithelial atrophy in vivo. To determine the therapeutic effect of LBS L on injured intestinal epithelium and explore the mechanism, the fasting model group rats were treated with LBS L (25 mg/kg) for 4 days. RESULTS Results in vitro showed that LBS L (10 μM) promoted cell proliferation and migration, affecting the S phase of the cell cycle. Western blot signals showed that LBS L raised the expression level of occludin. The miR-195-3p levels were decreased following LBS L treatment, which could be inversed by transfecting miR-195-3p mimic, demonstrating that LBS L inhibited miR-195-3p to improve cell growth. Results in vivo showed that LBS L could reverse the atrophic villi and inflammatory cell infiltration in the submucosa and restore miR-195-3p, occludin, and Ki67 levels in the intestine of mice in the fasting group. CONCLUSIONS LBS L restores injured intestinal epithelium by reducing the expression of miR-195-3p.
Collapse
Affiliation(s)
- Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xiaoyan Wen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Yuhang Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, PR China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
4
|
Liu X, Wang S, Wu X, Zhao Z, Jian C, Li M, Qin X. Astragaloside IV Alleviates Depression in Rats by Modulating Intestinal Microbiota, T-Immune Balance, and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:259-273. [PMID: 38064688 DOI: 10.1021/acs.jafc.3c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This study aims to explore the effects of Astragaloside IV (AS-IV) on abnormal behaviors, intestinal microbiota, intestinal T-immune balance, and fecal metabolism of a model of depression in rats. Herein, we integrally applied 16S rRNA sequencing, molecular biological techniques, and 1H NMR-based fecal metabolomics to demonstrate the antidepression activity of AS-IV. The results suggested that AS-IV regulated the depression-like behaviors of rats, which are presented by an increase of body weight, upregulation of sucrose preference rates, and a decrease of immobility time. Additionally, AS-IV increased the abundances of beneficial bacteria (Lactobacillus and Oscillospira) in a model of depression in rats. Moreover, AS-IV regulated significantly the imbalance of Th17/Treg cells, and the abnormal contents of both anti-inflammatory factors and pro-inflammatory factors. Besides, fecal metabolomics showed that AS-IV improved the abnormal levels of short-chain fatty acids and amino acids. Collectively, our research supplemented new data, supporting the potential of AS-IV as an effective diet or diet composition to improve depression-like behaviors, dysfunctions of microbiota, imbalance of T immune, and the abnormality of fecal metabolome. However, the causality of the other actions was not proven because of the experimental design and the methodology used. The current findings suggest that AS-IV could function as a promising diet or diet composition to alleviate depressed symptoms.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| |
Collapse
|
5
|
Wang L, Yang L, Cheng XL, Qin XM, Chai Z, Li ZY. The Beneficial Effects of Dietary Astragali Radix Are Related to the Regulation of Gut Microbiota and Its Metabolites. J Med Food 2024; 27:22-34. [PMID: 38236693 DOI: 10.1089/jmf.2023.k.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.
Collapse
Affiliation(s)
- Ling Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Lan Yang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Xiao-Ling Cheng
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Zhi Chai
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Sun LX, Li YY, Xie YM. Efficacy and safety of Tongmai Jiangtang capsule combined with conventional therapy in the treatment of diabetic peripheral neuropathy: a systematic review and meta-analysis. Front Neurol 2023; 14:1100327. [PMID: 37181570 PMCID: PMC10171201 DOI: 10.3389/fneur.2023.1100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background Recently, more and more Chinese patent drugs have been proved to be effective in the treatment of diabetic peripheral neuropathy (DPN). Tongmai Jiangtang capsule (TJC) is one of the representative ones. The present meta-analysis integrated data from several independent studies to determine the efficacy and safety of TJCs combined with routine hypoglycemic therapy for DPN patients, and to evaluate the quality of evidence. Methods SinoMed, Cochrane Library, PubMed, EMBASE, Web of Science, CNKI, Wanfang, VIP databases and registers were searched for randomized controlled trials (RCTs) involving TJC treatment of DPN up to February 18, 2023. Two researchers independently used the Cochrane risk bias tool and comprehensive reporting criteria for Chinese medicine trials to evaluate the methodological quality and reporting quality of the qualified studies. RevMan5.4 was used for Meta-analysis and evidence evaluation, with scores determined for recommendations, evaluation, development and GRADE. The Cochrane Collaboration ROB tool was used to evaluate the quality of the literature. The results of Meta-analysis were represented by forest plots. Results A total of 8 studies were included involving a total sample size of 656 cases. TJCs combined with conventional treatment (CT) could significantly accelerate myoelectricity graphic nerve conduction velocity, including that median nerve motor conduction velocity was faster than those of CT alone [mean difference (MD) = 5.20, 95% confidence interval (CI): 4.31-6.10, P < 0.00001], peroneal nerve motor conduction velocity was faster than those of CT alone (MD = 2.66, 95% CI: 1.63-3.68; P < 0.00001), median nerve sensory conduction velocity was faster than those of CT alone (MD = 3.06, 95% CI: 2.32-3.81, P < 0.00001), and peroneal nerve sensory conduction velocity was faster than those of CT alone (MD = 4.23, 95% CI: 3.30-5.16, P < 0.00001). The total efficiency of the TJCs + CT group was higher than that of the CT group (RR = 1.41, 95% CI: 1.28-1.56, P < 0.00001). The HbA1c after treatment in the TJCs + CT group was lower than that in the CT group (P < 0.05). No adverse drug reactions (ADRs) were reported in the combined TJCs or CT groups. Conclusions TJCs combined with CT reduced the severity of DPN symptoms and no treatment-associated ADRs were reported. However, these results should be considered with caution because there was marked heterogeneity in the research data. Therefore, more stringent RCTs should be designed to validate the efficacy of TJCs in DPN patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=264522, identifier: CRD42021264522.
Collapse
Affiliation(s)
- Lin-xi Sun
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-yuan Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-ming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
An HX, Ma RJ, Cao TQ, Liu C, Ji HY, Liu AJ. Preparation and anti-tumor effect of pig spleen ethanol extract against mouse S180 sarcoma cells in vivo. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Li D, Wang Y, Liu N, Chen S, Liu H, Wang P, Yu Z, Shu G, Lin J, Zhang W, Peng G, Zhao L, Tang H, Zhang K, Wen B, Fu H. Modified Sijunzi granule decreases post-weaning diarrhea in Rex rabbits via promoting intestinal development. Front Vet Sci 2022; 9:972326. [PMID: 36419729 PMCID: PMC9676230 DOI: 10.3389/fvets.2022.972326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/12/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional Chinese medicine (TCM) formulas can be adjusted on the basis of TCM basic theory to achieve the best curative effect, especially for diseases with complex pathogenesis, such as post-weaning diarrhea (PWD). Shugan Jianwei Sijunzi decoction (SJ-SJZD) can be recognized as modified Sijunzi Decoction (SJZD) supplemented with Astragalus mongholicus Bunge, Bupleurum chinense DC, Citrus × aurantium L., and Crataegus pinnatifida Bunge (fruit) in a fixed dosage ratio. The inactive ingredients were subsequently added to make granule, which was Shugan Jianwei Sijunzi granule (SJ-SJZG). Previous studies have confirmed the antagonism of SJ-SJZG to PWD. However, the mechanism of SJ-SJZG protective effects on small intestine in weaned Rex rabbits remained unclear. Animals were randomly divided into negative control (NC), low dose (LD), medium dose (MD), high dose (HD), and positive control (PC). SJ-SJZG significantly increased the intestinal length and the jejunum villi length. The SIgA level was statistically increased in duodenum and jejunum with the ELISA. Immunohistochemical detection showed that SIgA protein expression was also increased significantly in jejunum. Meanwhile, the relative expression of Zo1 in duodenum and jejunum of SJ-SJZG group increased significantly. SJ-SJZG significantly increased the relative expression of occludin in duodenum and jejunum as well. Moreover, real-time PCR results showed a significant increase in GLUT2 and SGLT1 relative expression in ileum. SJ-SJZG could also obviously enhance the expression of GLUT2 in jejunum and the expression of SGLT1 in duodenum. In conclusion, SJ-SJZG had been proven to be effective in promoting the development of small intestine and improving the immunity of small intestine. Moreover, SJ-SJZG could ensure the integrity of mucosal barrier and increase the ability of intestine to absorb glucose in small intestine.
Collapse
Affiliation(s)
- Dongbo Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueli Wang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Liu
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Shiqi Chen
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hanzhong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Ping Wang
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Zhiju Yu
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kai Zhang
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Bin Wen
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Liang C, Yao Y, Ding H, Li X, Li Y, Cai T. Rapid classification and identification of chemical components of Astragali radix by UPLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:943-960. [PMID: 35726352 DOI: 10.1002/pca.3150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Pharmacological studies indicate that Astragalus (AR) has various bioactivities, including anticancer, antiaging, anti-inflammatory, antiviral, and antioxidant activities. Flavonoids, saponins, amino acids, and polysaccharides are the main active components in AR. However, its complex chemical compositions bring certain difficulties to the analysis of this traditional Chinese medicine (TCM). Therefore, there is an urgent need to establish a method for rapid classification and identification of the chemical constituents in AR. OBJECTIVE To establish a method for rapid classification and identification of the main components of flavonoids, saponins, and amino acids in AR. METHODS The samples were analysed with ultra-high-performance liquid chromatography time-of-flight quadrupole mass spectrometry (UPLC-Q-TOF-MS) and data post-processing techniques. Firstly, fragmentation information was obtained in the positive and negative ion modes. Then, to realize the rapid classification and identification of AR components, the characteristic fragmentations (CFs) and neutral losses (NLs) were compared with information described in the literature. RESULTS A total of 45 chemical constituents were successfully screened out, including 22 flavonoids, 13 saponins, and 10 amino acids. CONCLUSION The established method realised the efficient classification and identification of flavonoids, saponins, and amino acid compounds in AR, which provided a basis for further study on AR.
Collapse
Affiliation(s)
- Chenrui Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoran Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
10
|
Yi YL, Li Y, Guo S, Yan H, Ma XF, Tao WW, Shang EX, Niu Y, Qian DW, Duan JA. Elucidation of the Reinforcing Spleen Effect of Jujube Fruits Based on Metabolomics and Intestinal Flora Analysis. Front Cell Infect Microbiol 2022; 12:847828. [PMID: 35402299 PMCID: PMC8987507 DOI: 10.3389/fcimb.2022.847828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) fruit (JF) is widely consumed as food in Asian countries due to its potential effects for human health. As a traditional Chinese medicine, JF is often used to treat anorexia, fatigue and loose stools caused by spleen deficiency syndromes in China, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, a rat model of spleen deficiency syndromes was adopted to investigate the therapeutic effect of JF extract and its possible mechanism by metabolomics analyses of plasma and urine as well as the intestinal flora analysis. The results showed that the changes in plasma and urine metabolites caused by spleen deficiency were reversed after administration of JF, and these changed endogenous metabolites were mainly involved in retinol metabolism, pentose and glucuronate interconversions, nicotinate and niacinamide metabolism pathways. The 16S rDNA sequencing results showed that JF could regulate intestinal flora imbalance caused by spleen deficiency. The covariance analysis of intestinal flora structure and metabolome indicated that Aerococcus may be a candidate strain for predicting and treating the metabolic pathways of spleen deficiency and related disorders. In summary, it can be revealed that spleen deficiency, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by JF extract.
Collapse
Affiliation(s)
- Yan-ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-fei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Da-wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|