1
|
Ghosh AN, Walsh CJ, Maiden MJ, Stinear TP, Deane AM. Effect of dietary fibre on the gastrointestinal microbiota during critical illness: A scoping review. World J Crit Care Med 2025; 14:98241. [DOI: 10.5492/wjccm.v14.i1.98241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
The systemic effects of gastrointestinal (GI) microbiota in health and during chronic diseases is increasingly recognised. Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise. While changes in dietary intake can rapidly change the GI microbiota, the impact of dietary changes during acute critical illness on the microbiota remain uncertain. Dietary fibre is metabolised by carbohydrate-active enzymes and, in health, can alter GI microbiota. The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states, specifically during critical illness. Randomised controlled trials and prospective cohort studies that include adults (> 18 years age) and reported changes to GI microbiota as one of the study outcomes using non-culture methods, were identified. Studies show dietary fibres have an impact on faecal microbiota in health and disease. The fibre, inulin, has a marked and specific effect on increasing the abundance of faecal Bifidobacteria. Short chain fatty acids produced by Bifidobacteria have been shown to be beneficial in other patient populations. Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness. More research is necessary to establish optimal fibre type, doses, duration of intervention in critical illness.
Collapse
Affiliation(s)
- Angajendra N Ghosh
- Department of Intensive Care, The Northern Hospital, Epping 3076, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Matthew J Maiden
- Department of Intensive Care, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Tim P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Adam M Deane
- Department of Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| |
Collapse
|
2
|
Ebrahimi M, Hooper SR, Mitsnefes MM, Vasan RS, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR, Lee AM. Investigation of a targeted panel of gut microbiome-derived toxins in children with chronic kidney disease. Pediatr Nephrol 2025:10.1007/s00467-024-06580-6. [PMID: 39820505 DOI: 10.1007/s00467-024-06580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The gut-kidney axis is implicated in chronic kidney disease (CKD) morbidity. We describe how a panel of gut microbiome-derived toxins relates to kidney function and neurocognitive outcomes in children with CKD, consisting of indoleacetate, 3-indoxylsulfate, p-cresol glucuronide, p-cresol sulfate, and phenylacetylglutamine. METHODS The Chronic Kidney Disease in Children (CKiD) cohort is a North American multicenter prospective cohort that enrolled children aged 6 months to 16 years with estimated glomerular filtration rate (eGFR) 30-89 ml/min/1.73 m2. Data from the 2-year study visit were used for this analysis. Toxin quantification (Metabolon Inc., Durham, NC) was performed with ultra-high performance liquid chromatography/tandem mass spectrometry. Executive function and echocardiograms were assessed. Regression analysis examined the association of toxin levels with eGFR, CKD etiology, and neurocognitive and cardiac assessments (adjusted for age, sex, and urine protein:creatinine [UPCR]). RESULTS There were 150 CKiD participants included in this study. All toxins levels were significantly inversely correlated with eGFR (Spearman's rho - 0.45 to - 0.69). Children with non-glomerular CKD had significantly higher levels of 3-indoxylsulfate, phenylacetylglutamine, and p-cresol glucuronide. The toxin levels did not associate with neurocognitive outcomes. P-cresol glucuronide and phenylacetylglutamine negatively associated with left ventricular mass index z score, but did not associate with left ventricular hypertrophy. CONCLUSIONS Children with CKD have high levels of circulating gut microbiome-derived toxins. The levels of these toxins are strongly correlated with eGFR. There appear to be differences in toxin level based on glomerular versus non-glomerular etiology, even when accounting for the differences in eGFR between these two subgroups. In this sample, we did not detect any associations between these toxin levels and neurocognitive or cardiac outcomes.
Collapse
Affiliation(s)
| | - Stephen R Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mark M Mitsnefes
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bradley A Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle R Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur M Lee
- for the CKiD Study Investigators and the NIDDK CKD Biomarkers Consortium, 3500 Civic Center Boulevard, Philadelphia, PA, 19041, USA.
| |
Collapse
|
3
|
Qiu J, Wu S, Huang R, Liao Z, Pan X, Zhao K, Peng Y, Xiang S, Cao Y, Ma Y, Xiao Z. Effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Front Microbiol 2025; 15:1508217. [PMID: 39839108 PMCID: PMC11748296 DOI: 10.3389/fmicb.2024.1508217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Antibiotics, as the most commonly prescribed class of drugs in neonatal intensive care units, have an important impact on the developing neonatal gut microbiota. Therefore, comprehending the effects of commonly used antibiotic therapy on the gut microbiota and butyrate-producers in early infants could provide information for therapeutic decision-making in the NICU. Objectives To explore the effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Methods A total of 72 infants were included in the study. We performed 16S rRNA sequencing on stool swab samples collected from neonatal intensive care unit patients who received amoxicillin-clavulanic acid (AC, n = 10), moxalactam (ML, n = 28) and non-antibiotics (NA, n = 34). We then compared the taxonomic composition between treatment regimens, focusing on differences in butyrate-producers. Results Our study showed that there were significant differences in Shannon index (p = 0.033) and Beta diversity (p = 0.014) among the three groups. At the family level, compared with the other two groups, the relative abundance of Clostridiaceae (p < 0.001) and Veillonellaceae (p = 0.004) were significantly higher, while the relative abundance of Enterococcidae (p < 0.001) was significantly lower in the NA group. The relative abundance of Enterobacteriaceae (p = 0.022) in the AC group was greater than that in the other two groups. Additionally, butyrate-producers (p < 0.001), especially Clostridiaceae (p < 0.001), were noticeably more abundant in the NA group. The relative abundance of Clostridiaceae and butyrate-producers were the lowest in the ML group (p < 0.001). Conclusion We found that antibiotic therapy had an adverse impact on the initial development of gut microbiota and leaded to a reduction in the abundance of butyrate-producers, particularly Clostridiaceae. Furthermore, moxalactam had a more pronounced effect on the gut microbiota compared to amoxicillin-clavulanic acid.
Collapse
Affiliation(s)
- Jun Qiu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Sha Wu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ruiwen Huang
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenyu Liao
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Kunyan Zhao
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- The School of Public Health, University of South China, Hengyang, China
| | - Yunlong Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yunhui Cao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ye Ma
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenghui Xiao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
4
|
Chinnadurai S, Meyer C, Roby B, Redmann A, Meyer A, Tibesar R, Jakubowski L, Lander TA, Finch M, Jayawardena AD. Reduction of Antibiotic-Associated Conditions After Tympanostomy Tube Placement in Children. Laryngoscope 2025; 135:423-428. [PMID: 39172004 PMCID: PMC11635148 DOI: 10.1002/lary.31717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Tympanostomy tube placement has been shown to decrease systemic antibiotics usage in patients with recurrent acute otitis media. Systemic antibiotics in children are associated with an increase in antibiotic-associated conditions (asthma, allergic rhinitis, food allergy, atopic dermatitis, celiac disease, overweight/obesity, attention-deficit hyperactivity disorder [ADHD], autism, learning disability, and Clostridium difficile colonization) later in life. The objective of this study is to estimate whether tympanostomy tube placement is associated with a reduction in antibiotic-associated conditions in children with recurrent acute otitis media (RAOM). METHODS A retrospective cohort review of electronic medical records from 1991 to 2011 at a large pediatric hospital system was performed identifying 27,584 patients under 18 years old with RAOM, defined by 3 or more episodes of AOM. Antibiotic-associated conditions were defined using ICD-9 and ICD-10 codes. RESULTS The enrollment population was largely composed of White patients (28.9%), Black patients (30.1%), and Hispanic/Latino patients (16.4%). The number of systemic antibiotics prescribed per encounter was significantly lower in children who pursued tympanostomy tubes (0.14 antibiotics per encounter) versus those who did not (0.23 antibiotics per encounter) (p < 0.001). Patients with RAOM who received tympanostomy tubes were less likely to have diagnoses of overweight/obesity (OR. 0.62 [0.55, 0.68]; p < 0.001), asthma (OR 0.8 [0.74, 0.87]; p < 0.001), allergic rhinitis (OR 0.72 [0.65, 0.81]; p < 0.001), and atopic dermatitis (0.78 [0.71, 0.86]; p < 0.001). CONCLUSIONS AND RELEVANCE Tympanostomy tube placement is associated with less systemic antibiotic administration and a decreased incidence of overweight/obesity, asthma, allergic rhinitis, and atopic dermatitis in children diagnosed with RAOM. LEVEL OF EVIDENCE 4 Laryngoscope, 135:423-428, 2025.
Collapse
Affiliation(s)
- Sivakumar Chinnadurai
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Cassandra Meyer
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Research InstituteChildren's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
| | - Brianne Roby
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Andrew Redmann
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Abby Meyer
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Robert Tibesar
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luke Jakubowski
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Timothy A. Lander
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael Finch
- Research InstituteChildren's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
| | - Asitha D.L. Jayawardena
- ENT and Facial Plastic SurgeryChildren's MinnesotaMinneapolisMinnesotaUSA
- Otolaryngology Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Bornbusch SL, Crosier A, Gentry L, Delaski KM, Maslanka M, Muletz-Wolz CR. Fecal microbiota transplants facilitate post-antibiotic recovery of gut microbiota in cheetahs (Acinonyx jubatus). Commun Biol 2024; 7:1689. [PMID: 39715825 DOI: 10.1038/s42003-024-07361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Burgeoning study of host-associated microbiomes has accelerated the development of microbial therapies, including fecal microbiota transplants (FMTs). FMTs provide host-specific microbial supplementation, with applicability across host species. Studying FMTs can simultaneously provide comparative frameworks for understanding microbial therapies in diverse microbial systems and improve the health of managed wildlife. Ex-situ carnivores, including cheetahs (Acinonyx jubatus), often suffer from intractable gut infections similar to those treated with antibiotics and FMTs in humans, providing a valuable system for testing FMT efficacy. Using an experimental approach in 21 cheetahs, we tested whether autologous FMTs facilitated post-antibiotic recovery of gut microbiota. We used 16S rRNA sequencing and microbial source tracking to characterize antibiotic-induced microbial extirpations and signatures of FMT engraftment for single versus multiple FMTs. We found that antibiotics extirpated abundant bacteria and FMTs quickened post-antibiotic recovery via engraftment of bacteria that may facilitate protein digestion and butyrate production (Fusobacterium). Although multiple FMTs better sustained microbial recovery compared to a single FMT, one FMT improved recovery compared to antibiotics alone. This study elucidated the dynamics of microbiome modulation in a non-model system and improves foundations for reproducible, low-cost, low-dose, and minimally invasive FMT protocols, emphasizing the scientific and applied value of FMTs across species.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA.
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA.
| | - Adrienne Crosier
- Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Lindsey Gentry
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Kristina M Delaski
- Department of Conservation Medicine, Smithsonian's National Zoo and Conservation Biology Institution, Front Royal, VA, 22630, USA
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| |
Collapse
|
6
|
Abasaeed AE, Ibrahim AA, Fakeeha AH, Bayazed MO, Amer MS, Abu‐Dahrieh JK, Al‐Fatesh AS. Ni-Co Bimetallic Catalysts Supported on Mixed Oxides (Sc-Ce-Zr) for Enhanced Methane Dry Reforming. ChemistryOpen 2024; 13:e202400086. [PMID: 39533456 PMCID: PMC11625958 DOI: 10.1002/open.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024] Open
Abstract
Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH4 and CO2 at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO2-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O2- species, and the total amount of CO2 desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.
Collapse
Affiliation(s)
- Ahmed E. Abasaeed
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Ahmed A. Ibrahim
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Anis H. Fakeeha
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Mohammed O. Bayazed
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Mabrook S. Amer
- Chemistry Department, College of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
| | - Jehad K. Abu‐Dahrieh
- School of Chemistry and Chemical EngineeringQueen's University BelfastBelfast, Northern IrelandBT9 5AGUK
| | - Ahmed S. Al‐Fatesh
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| |
Collapse
|
7
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
8
|
Liang W, Gao Y, Zhao Y, Gao L, Zhao Z, He Z, Li S. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. Probiotics Antimicrob Proteins 2024; 16:1996-2006. [PMID: 37639209 PMCID: PMC11573863 DOI: 10.1007/s12602-023-10150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Probiotics are widely recognized for their ability to prevent and therapy antibiotic-associated diarrhea (AAD). This study was designed to evaluate Lactiplantibacillus plantarum ELF051 ability to prevent colon inflammation and its effect on gut microbial composition in a mouse model of AAD. The mice were intragastrically administered triple antibiotics for 7 days and then subjected to L. plantarum ELF051 for 14 days. The administration of L. plantarum ELF051 ameliorated the pathological changes in the colon tissue, downregulated interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and upregulated IL-10, and increased the intestinal short-chain fatty acids (SCFAs) level. Lactiplantibacillus plantarum ELF051 also regulated the Toll-like receptor/myeloid differentiation primary response 88/nuclear factor kappa light chain enhancer of activated B cells (TLR4/MyD88/NF-κB) and the phosphatidylinositol 3-kinase/protein kinase B/ NF-κB (PI3K/AKT/ NF-κB) inflammatory signaling pathways. 16S rRNA analyses showed that L. plantarum ELF051 increased the abundance and diversity of gut bacteria, restoring gut microbiota imbalance. A Spearman's rank correlation analysis showed that lactobacilli are closely associated with inflammatory markers and SCFAs. This work demonstrated that L. plantarum ELF051 can attenuate antibiotic-induced intestinal inflammation in a mouse AAD model by suppressing the pro-inflammatory response and modulating the gut microbiota.
Collapse
Affiliation(s)
- Wei Liang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| | - Lei Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zhongmei He
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| |
Collapse
|
9
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Zelasko S, Swaney MH, Sandstrom S, Lee KE, Dixon J, Riley C, Watson L, Godfrey JJ, Ledrowski N, Rey F, Safdar N, Seroogy CM, Gern JE, Kalan L, Currie C. Early-life upper airway microbiota are associated with decreased lower respiratory tract infections. J Allergy Clin Immunol 2024:S0091-6749(24)01189-8. [PMID: 39547283 DOI: 10.1016/j.jaci.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Microbial interactions mediating colonization resistance play key roles within the human microbiome, shaping susceptibility to infection from birth. The role of the nasal and oral microbiome in the context of early life respiratory infections and subsequent allergic disease risk remains understudied. OBJECTIVES Our aim was to gain insight into microbiome-mediated defenses and respiratory pathogen colonization dynamics within the upper respiratory tract during infancy. METHODS We performed shotgun metagenomic sequencing of nasal (n = 229) and oral (n = 210) microbiomes from our Wisconsin Infant Study Cohort at age 24 months and examined the influence of participant demographics and exposure history on microbiome composition. Detection of viral and bacterial respiratory pathogens by RT-PCR and culture-based studies with antibiotic susceptibility testing, respectively, to assess pathogen carriage was performed. Functional bioassays were used to evaluate pathogen inhibition by respiratory tract commensals. RESULTS Participants with early-life lower respiratory tract infection were more likely to be formula fed, attend day care, and experience wheezing. Composition of the nasal, but not oral, microbiome associated with prior lower respiratory tract infection, namely lower alpha diversity, depletion of Prevotella, and enrichment of Moraxella catarrhalis including drug-resistant strains. Prevotella originating from healthy microbiomes had higher biosynthetic gene cluster abundance and exhibited contact-independent inhibition of M catarrhalis. CONCLUSIONS These results suggest interbacterial competition affects nasal pathogen colonization. This work advances understanding of protective host-microbe interactions occurring in airway microbiomes that alter infection susceptibility in early life.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis.
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Jonah Dixon
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Colleen Riley
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lauren Watson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jared J Godfrey
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Naomi Ledrowski
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Federico Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wis
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Gold M, Bacharier LB, Hartert TV, Rosas-Salazar C. Use of Antibiotics in Infancy and Asthma in Childhood: Confounded or Causal Relationship? A Critical Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2669-2677. [PMID: 38901616 DOI: 10.1016/j.jaip.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Childhood asthma is among the most common chronic lung diseases in the pediatric population, having substantial consequences on the everyday life of children and their caregivers. There remains a lack of a singular, efficacious strategy for averting the inception of childhood asthma. The rate of pediatric antibiotic usage continues to be high, which makes it crucial to understand whether there exists a causal link between the use of antibiotics in infancy and the development of asthma in childhood. In this rostrum, we conduct a critical review of the literature concerning the association of infant antibiotic use and the onset of childhood asthma. Drawing on the results of 5 meta-analyses addressing this topic and of a recent randomized controlled trial, a notable association emerges between antibiotic exposure in the first year of life and the occurrence of childhood asthma that appears to be beyond potential study limitations (such as reverse causation, confounding by indication, and recall bias). Furthermore, we highlight the need for additional research in this field that could improve our understanding of important aspects of this association and lead to the design of an intervention aimed to deliver antibiotics safely during early life and reduce the burden of childhood asthma.
Collapse
|
12
|
Sanyang B, de Silva TI, Camara B, Beloum N, Kanteh A, Manneh J, de Steenhuijsen Piters WAA, Bogaert D, Sesay AK, Roca A. Effect of intrapartum azithromycin on gut microbiota development in early childhood: A post hoc analysis of a double-blind randomized trial. iScience 2024; 27:110626. [PMID: 39262807 PMCID: PMC11387895 DOI: 10.1016/j.isci.2024.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Intrapartum azithromycin prophylaxis has shown the potential to reduce maternal infections but showed no effect on neonatal sepsis and mortality. Antibiotic exposure early in life may affect gut microbiota development, leading to undesired consequences. Therefore, we here assessed the impact of 2 g oral intrapartum azithromycin on gut microbiota development from birth to the age of 3 years, by 16S-rRNA gene profiling of rectal samples from 127 healthy Gambian infants selected from a double-blind randomized placebo-controlled clinical trial (PregnAnZI-2). Microbiota trajectories showed, over the first month of life, a slower community transition and increase of Enterobacteriaceae (p = 0.001) and Enterococcaceae (p = 0.064) and a decrease of Bifidobacterium (p < 0.001) in the azithromycin compared to the placebo arm. Intrapartum azithromycin alters gut microbiota development and increases proinflammatory bacteria in the first month of life, which may have undesirable effects on the child.
Collapse
Affiliation(s)
- Bakary Sanyang
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Thushan I de Silva
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Bully Camara
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Nathalie Beloum
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Abdoulie Kanteh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jarra Manneh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Abdul Karim Sesay
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Anna Roca
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
13
|
Novielli P, Romano D, Magarelli M, Diacono D, Monaco A, Amoroso N, Vacca M, De Angelis M, Bellotti R, Tangaro S. Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence. iScience 2024; 27:110709. [PMID: 39286497 PMCID: PMC11402656 DOI: 10.1016/j.isci.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and an AU-PRC of 0.967 ± 0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Michele Magarelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
14
|
Yang L, Deng F, Gong Q, Liu X, Li M, Zhang C. Distribution of the active components from Xianglian Pill in tissues of healthy and antibiotic-associated diarrhea model mice and the mechanism study. J Pharm Biomed Anal 2024; 248:116326. [PMID: 38959756 DOI: 10.1016/j.jpba.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotic therapy, characterized by intestinal inflammation which reduces the quality of life of patients. Xianglian Pill (XLP) has long been used to treat abdominal pain, diarrhea, bacillary dysentery and enteritis. Studies found that XLP has curative effect on AAD; however, the chemical constituents and mechanism of XLP have not been fully elucidated because of the lack of in vitro and in vivo studies. In this study, ultra-high performance liquid chromatography mass spectrometry method (UPLC-Q-Exactive-Orbitrap-HRMS) was used to examine the components of the XLP. Then, the binding between active compounds and the key targets was studied using network pharmacology and molecular docking. A comparative tissue distribution study was established for the simultaneous determination of the 10 active components in healthy and AAD mouse models. Forty-six components were characterized from XLP. According to the network pharmacology degree value, a prediction was made that encompassed 42 components and 14 core targets, which were intricately involved in crucial biological pathways, such as the AGE-RAGE signaling, cellular senescence, and MAPK signaling. Tissue distribution analysis showed that the 10 components were widely distributed in the heart, liver, spleen, lungs, kidneys, small intestine, and large intestine of mice, with varying concentrations in healthy and AAD mice. Molecular docking analysis also indicated that the active compounds in the tissue distribution could bind tightly to key targets of network pharmacological studies. This study provides a reference for further investigations of the relationships between the chemical components and pharmacological activities of XLP.
Collapse
Affiliation(s)
- Lujia Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fang Deng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qianqian Gong
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Muyao Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Chuanyang Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
15
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Kuroda H, Kusama Y, Ogura A, Matsunaga T, Atsumi Y, Kamimura K. An Infant With COVID-19 Presenting With a Bulging Fontanel: A Case Report and Literature Review. Cureus 2024; 16:e63667. [PMID: 39092398 PMCID: PMC11293365 DOI: 10.7759/cureus.63667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
A bulging fontanel is a sign of elevated intracranial pressure, which can be caused by diseases with intracranial fluid retention or swelling of the cerebral parenchyma. We experienced a case of an infant with a typical course of mild coronavirus disease 2019 (COVID-19) but with a bulging fontanel as a finding at presentation. The patient, a three-month-old boy with no underlying conditions, presented to the emergency clinic with fever, vomiting, and loss of appetite. Due to the absence of crying and the bulging fontanel, he was referred to our hospital with suspected bacterial meningitis. The diameter of the anterior fontanel was 2.5 cm, as measured by the Popich and Smith method. He showed no signs of consciousness impairment and appeared to be as active as usual. Computed tomography revealed a bulging fontanel. Cerebrospinal fluid examination showed no elevated cell counts, and cultures were negative. Accordingly, bacterial meningitis was ruled out. The fever resolved on the day after admission, and the patient was discharged on the third day after admission in good general condition. When an infant diagnosed with COVID-19 presents with a bulging fontanel, it is important to be aware of its low specificity and excessive antibiotic treatment should be reconsidered.
Collapse
Affiliation(s)
- Hiroyuki Kuroda
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, JPN
| | - Yoshiki Kusama
- Department of Infectious Diseases, Osaka University Hospital, Suita, JPN
| | - Ayu Ogura
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, JPN
| | - Takashi Matsunaga
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, JPN
| | - Yukari Atsumi
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, JPN
| | - Katsunori Kamimura
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, JPN
| |
Collapse
|
17
|
Qi Q, Wang L, Zhu Y, Li S, Gebremedhin MA, Wang B, Zhu Z, Zeng L. Unraveling the Microbial Symphony: Impact of Antibiotics and Probiotics on Infant Gut Ecology and Antibiotic Resistance in the First Six Months of Life. Antibiotics (Basel) 2024; 13:602. [PMID: 39061284 PMCID: PMC11274100 DOI: 10.3390/antibiotics13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to examine the effects of antibiotic and probiotic usage on the gut microbiota structure and the presence of antibiotic-resistance genes (ARGs) in infants during the first six months of life. Questionnaires and fecal samples were collected within three days of birth, two months, and six months to assess antibiotic and probiotic exposure. Gut microbiotas were sequenced via 16S rRNA, and ARGs were conducted by qPCR, including beta-lactam (mecA, blaTEM), tetracycline (tetM), fluoroquinolone (qnrS), aminoglycoside (aac(6')-Ib), and macrolide (ermB). Infants were categorized by antibiotic and probiotic usage and stratified by delivery mode, microbial composition, and ARG abundances were compared, and potential correlations were explored. A total of 189 fecal samples were analyzed in this study. The gut microbiota diversity (Chao1 index) was significantly lower in the "only probiotics" (PRO) group compared to the "neither antibiotics nor probiotics" (CON) group at six months for the CS stratification (p = 0.029). Compositionally, the abundance of core genus Bifidobacterium_pseudocatenulatum was less abundant for the antibiotic during delivery (IAP) group than that in the CON group within the first three days (p = 0.009), while core genus Enterococcus_faecium was more abundant in the PRO than that in the CON group (p = 0.021) at two months. ARGs were highly detected, with Enterococcus hosting tetM and Escherichia associated with blaTEM within three days of birth, though no correlation was found between Bifidobacterium and ARGs. These findings emphasized the critical importance of carefully managing antibiotic and probiotic exposures in early life, with implications for promoting lifelong health through preserving a healthy infant gut ecosystem.
Collapse
Affiliation(s)
- Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Liang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Yingze Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Shaoru Li
- Experimental Teaching Center, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mitslal Abrha Gebremedhin
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Baozhu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Department of Health, Northwest Women’s and Children’s Hospital, Xi’an 710003, China
| | - Zhonghai Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Center for Chronic Disease Control and Prevention, Global Health Institution, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
18
|
Alfayate-Miguélez S, Martín-Ayala G, Jiménez-Guillén C, Alcaraz-Quiñonero M, Delicado RH, Arnau-Sánchez J. Implementation of a Multifaceted Program to Improve the Rational Use of Antibiotics in Children under 3 Years of Age in Primary Care. Antibiotics (Basel) 2024; 13:572. [PMID: 39061254 PMCID: PMC11273502 DOI: 10.3390/antibiotics13070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
A multifaceted, participatory, open program based on a qualitative and quantitative approach was developed in the Region of Murcia (Spain) aimed to reduce antibiotic use in children under 3 years of age diagnosed with upper respiratory tract infections (acute otitis media, pharyngitis, and common cold). Antibiotic consumption was measured using the defined daily dose per 1000 inhabitants per day (DHD). Pre-intervention data showed a prevalence of antibiotic prescriptions in the primary care setting of 45.7% and a DHD of 19.05. In 2019, after the first year of implementation of the program, antibiotic consumption was 10.25 DHD with an overall decrease of 48% as compared with 2015. Although antibiotic consumption decreased in all health areas, there was a large variability in the magnitude of decreases across health areas (e.g., 12.97 vs. 4.77 DHD). The intervention program was effective in reducing the use of antibiotics in children under 3 years of age with common upper respiratory diseases, but reductions in antibiotic consumption were not consistent among all health areas involved.
Collapse
Affiliation(s)
| | - Gema Martín-Ayala
- General Directorate of Health Planning, Research, Pharmacy and Citizen Services, Health Counseling of Murcia Region, E-30001 Murcia, Spain
| | - Casimiro Jiménez-Guillén
- General Directorate of Health Planning, Research, Pharmacy and Citizen Services, Health Counseling of Murcia Region, E-30001 Murcia, Spain
- National Plan for Antibiotic Resistance (PRAN) in Murcia Region, E-30001 Murcia, Spain
| | | | - Rafael Herrero Delicado
- Pharmaceutical Management Service, General Directorate for Health Care, Murciano Health Service, E-30100 Murcia, Spain
| | - José Arnau-Sánchez
- Research Group of Murciano Institute of Biosanitary Research, IMIB, E-30120 Murcia, Spain
- General Directorate of Health Planning, Research, Pharmacy and Citizen Services, Health Counseling of Murcia Region, E-30001 Murcia, Spain
- Nursing Faculty, University of Murcia, E-30120 Murcia, Spain
| |
Collapse
|
19
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
20
|
Annunziato A, Vacca M, Cristofori F, Dargenio VN, Celano G, Francavilla R, De Angelis M. Celiac Disease: The Importance of Studying the Duodenal Mucosa-Associated Microbiota. Nutrients 2024; 16:1649. [PMID: 38892582 PMCID: PMC11174386 DOI: 10.3390/nu16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Collapse
Affiliation(s)
- Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| |
Collapse
|
21
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
22
|
Vagedes J, Huber BM, Islam MOA, Vagedes K, Kohl M, von Schoen-Angerer T. Antibiotic Use in a Neonatal Intensive Care Unit Practicing Integrative Medicine-A Retrospective Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:394-402. [PMID: 37815790 PMCID: PMC11001955 DOI: 10.1089/jicm.2023.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Background: Antibiotic use in neonatal intensive care units (NICUs) remains high. Low antibiotic prescribing has been documented among physicians trained in complementary medicine. This study sought to identify if an NICU integrating complementary medicine has low antibiotic prescribing. Methods: We conducted a retrospective analysis at the level-2 NICU of the Filderklinik, an integrative medicine hospital in Southern Germany, to compare antibiotic use locally and internationally; to compare neonates with suspected infection, managed with and without antibiotics; and to describe use and safety of complementary medicinal products. Results: Among 7778 live births, 1086 neonates were hospitalized between 2014 and 2017. Two hundred forty-six were diagnosed with suspected or confirmed infection, their median gestational age was 40.3 weeks (range 29-42), 3.25% had a birthweight <2500 g, 176 were treated with antibiotics for a median duration of 4 days, 6 had culture-proven infection (0.77 per 1000 live births), and 2.26% of live births were started on antibiotics. A total of 866 antibiotic treatment days corresponded to 111 antibiotic days per 1000 live births and 8.8 antibiotic days per 100 hospital days. Neonates managed with antibiotics more often had fever and abnormal laboratory parameters than those managed without. Complementary medicinal products comprising 71 different natural substances were used, no side effect or adverse event were described. A subanalysis using the inclusion criteria of a recent analysis of 13 networks in Europe, North America, and Australia confirmed this cohort to be among the lowest prescribing networks. Conclusions: Antibiotic use was low in this NICU in both local and international comparison, while the disease burden was in the mid-range, confirming an association between integrative medicine practice and low antibiotic prescribing in newborns. Complementary medicinal products were widely used and well tolerated. Clinical Trial Registration number: NCT04893343.
Collapse
Affiliation(s)
- Jan Vagedes
- ARCIM Institute, Filderstadt, Germany
- Department of Pediatrics, Filderklinik, Filderstadt, Germany
- Department of Neonatology, University Hospital Tübingen, Tübingen, Germany
| | - Benedikt M. Huber
- Center for Integrative Pediatrics, Fribourg Cantonal Hospital, Fribourg, Switzerland
- Department of Community Health, Fribourg University, Fribourg, Switzerland
| | | | | | - Matthias Kohl
- Institute of Precision Medicine, University Furtwangen, Furtwangen, Germany
| | - Tido von Schoen-Angerer
- ARCIM Institute, Filderstadt, Germany
- Center for Integrative Pediatrics, Fribourg Cantonal Hospital, Fribourg, Switzerland
- Department of Community Health, Fribourg University, Fribourg, Switzerland
| |
Collapse
|
23
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
24
|
Geng S, Guo P, Li X, Shi Y, Wang J, Cao M, Zhang Y, Zhang K, Li A, Song H, Zhang Z, Shi J, Liu J, Yang Y. Biomimetic Nanovehicle-Enabled Targeted Depletion of Intratumoral Fusobacterium nucleatum Synergizes with PD-L1 Blockade against Breast Cancer. ACS NANO 2024; 18:8971-8987. [PMID: 38497600 DOI: 10.1021/acsnano.3c12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has been approved for breast cancer (BC), but clinical response rates are limited. Recent studies have shown that commensal microbes colonize a variety of tumors and are closely related to the host immune system response. Here, we demonstrated that Fusobacterium nucleatum (F.n), which is prevalent in BC, creates an immunosuppressive tumor microenvironment (ITME) characterized by a high-influx of myeloid cells that hinders ICB therapy. Administering the antibiotic metronidazole in BC can deplete F.n and remodel the ITME. To prevent an imbalance in the systemic microbiota caused by antibiotic administration, we designed a biomimetic nanovehicle for on-site antibiotic delivery inspired by F.n homing to BC. Additionally, ferritin-nanocaged doxorubicin was coloaded into this nanovehicle, as immunogenic chemotherapy has shown potential for synergy with ICB. It has been demonstrated that this biomimetic nanovehicle can be precisely homed to BC and efficiently eliminate intratumoral F.n without disrupting the diversity and abundance of systemic microbiota. This ultimately remodels the ITME, improving the therapeutic efficacy of the PD-L1 blocker with a tumor inhibition rate of over 90% and significantly extending the median survival of 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengke Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinling Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengnian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Airong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Doolin ML, Dearing MD. Differential Effects of Two Common Antiparasitics on Microbiota Resilience. J Infect Dis 2024; 229:908-917. [PMID: 38036425 DOI: 10.1093/infdis/jiad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Parasitic infections challenge vertebrate health worldwide, and off-target effects of antiparasitic treatments may be an additional obstacle to recovery. However, there have been few investigations of the effects of antiparasitics on the gut microbiome in the absence of parasites. METHODS We investigated whether two common antiparasitics-albendazole (ALB) and metronidazole (MTZ)-significantly alter the gut microbiome of parasite-free mice. We treated mice with ALB or MTZ daily for 7 days and sampled the fecal microbiota immediately before and after treatment and again after a two-week recovery period. RESULTS ALB did not immediately change the gut microbiota, while MTZ decreased microbial richness by 8.5% and significantly changed community structure during treatment. The structural changes caused by MTZ included depletion of the beneficial family Lachnospiraceae, and predictive metagenomic analysis revealed that these losses likely depressed microbiome metabolic function. Separately, we compared the fecal microbiotas of treatment groups after recovery, and there were minor differences in community structure between the ALB, MTZ, and sham-treated control groups. CONCLUSIONS These results suggest that a healthy microbiome is resilient after MTZ-induced depletions of beneficial gut microbes, and ALB may cause slight, latent shifts in the microbiota but does not deplete healthy gut microbiota diversity.
Collapse
Affiliation(s)
- Margaret L Doolin
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Boscarino G, Romano R, Iotti C, Tegoni F, Perrone S, Esposito S. An Overview of Antibiotic Therapy for Early- and Late-Onset Neonatal Sepsis: Current Strategies and Future Prospects. Antibiotics (Basel) 2024; 13:250. [PMID: 38534685 DOI: 10.3390/antibiotics13030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Neonatal sepsis is a clinical syndrome mainly associated with a bacterial infection leading to severe clinical manifestations that could be associated with fatal sequalae. According to the time of onset, neonatal sepsis is categorized as early- (EOS) or late-onset sepsis (LOS). Despite blood culture being the gold standard for diagnosis, it has several limitations, and early diagnosis is not immediate. Consequently, most infants who start empirical antimicrobial therapy do not have an underlying infection. Despite stewardship programs partially reduced this negative trend, in neonatology, antibiotic overuse still persists, and it is associated with several relevant problems, the first of which is the increase in antimicrobial resistance (AMR). Starting with these considerations, we performed a narrative review to summarize the main findings and the future prospects regarding antibiotics use to treat neonatal sepsis. Because of the impact on morbidity and mortality that EOS and LOS entail, it is essential to start an effective and prompt treatment as soon as possible. The use of targeted antibiotics is peremptory as soon as the pathogen in the culture is detected. Although prompt therapy is essential, it should be better assessed whether, when and how to treat neonates with antibiotics, even those at higher risk. Considering that we are certainly in the worrying era defined as the "post-antibiotic era", it is still essential and urgent to define novel strategies for the development of antibacterial compounds with new targets or mechanisms of action. A future strategy could also be to perform well-designed studies to develop innovative algorithms for improving the etiological diagnosis of infection, allowing for more personalized use of the antibiotics to treat EOS and LOS.
Collapse
Affiliation(s)
- Giovanni Boscarino
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Rossana Romano
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carlotta Iotti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Tegoni
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Serafina Perrone
- PNeonatology Unit, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
27
|
Waitzberg D, Guarner F, Hojsak I, Ianiro G, Polk DB, Sokol H. Can the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther 2024; 41:901-914. [PMID: 38286962 PMCID: PMC10879266 DOI: 10.1007/s12325-024-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.
Collapse
Affiliation(s)
- Dan Waitzberg
- Department of Gastroenterology, LIM-35, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Iva Hojsak
- Referral Centre for Pediatric Gastroenterology and Nutrition, School of Medicine, University of Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, San Diego, and Rady Children's Hospital, University of California, San Diego, CA, USA
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
28
|
Le Saux N, Viel-Thériault I. Shifting the antibiotic rhetoric in children from 'just in case' to 'disclose the risk': Has the time come? JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2024; 9:6-10. [PMID: 38567369 PMCID: PMC10984317 DOI: 10.3138/jammi-2023-12-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Nicole Le Saux
- Division of Infectious Diseases, Children’s Hospital of Infectious Diseases, Ottawa, Ontario
| | | |
Collapse
|
29
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
30
|
Jiménez-Rojas V, Villanueva-García D, Miranda-Vega AL, Aldana-Vergara R, Aguilar-Rodea P, López-Marceliano B, Reyes-López A, Alcántar-Curiel MD. Gut colonization and subsequent infection of neonates caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 13:1322874. [PMID: 38314094 PMCID: PMC10834783 DOI: 10.3389/fcimb.2023.1322874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
The gut microbiota harbors diverse bacteria considered reservoirs for antimicrobial resistance genes. The global emergence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) significantly contributes to healthcare-associated infections (HAIs). We investigated the presence of ESBL-producing Escherichia coli (ESBL-PEco) and ESBL-producing Klebsiella pneumoniae (ESBL-PKpn) in neonatal patients' guts. Furthermore, we identified the factors contributing to the transition towards ESBL-PEco and ESBL-PKpn-associated healthcare-associated infections (HAIs). The study was conducted from August 2019 to February 2020, in a Neonatal Intensive Care Unit of the Hospital Infantil de México Federico Gómez. Rectal samples were obtained upon admission, on a weekly basis for a month, and then biweekly until discharge from the neonatology ward. Clinical data, culture results, and infection information were gathered. We conducted antimicrobial tests, multiplex PCR assay, and pulsed-field gel electrophoresis (PFGE) to determine the antimicrobial resistance profile and genetic relationships. A comparison between the group's controls and cases was performed using the Wilcoxon and Student t-tests. Of the 61 patients enrolled, 47 were included, and 203 rectal samples were collected, identifying 242 isolates. In 41/47 (87%) patients, colonization was due to ESBL-PEco or ESBL-PKpn. And nine of them developed HAIs (22%, 9/41). ESBL-PEco resistance to cephalosporins ranged from 25.4% to 100%, while ESBL-PKpn resistance varied from 3% to 99%, and both bacteria were susceptible to carbapenems, tigecillin, and colistin. The prevalent bla CTX-M-group-1 gene accounted for 77.2% in ESBL-PEco and 82.2% in ESBL-PKpn, followed by bla TEM 50% and bla OXA-1 43.8% in ESBL-PEco and bla TEM 80.2% and bla SHV 76.2% in ESBL-PKpn. Analysis of clonality revealed identical colonizing and infection isolates in only seven patients. Significant risk factors included hospital stay duration, duration of antibiotic treatment, and invasive device usage. Our findings suggest high ESBL-PEco and ESBL-PKpn rates of colonization often lead to infection in neonates. Attention should be paid to patients with ESBL-PE.
Collapse
Affiliation(s)
- Verónica Jiménez-Rojas
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Dina Villanueva-García
- Departamento de Neonatología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ana Luisa Miranda-Vega
- Departamento de Neonatología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Rubén Aldana-Vergara
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Pamela Aguilar-Rodea
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Beatriz López-Marceliano
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Alfonso Reyes-López
- Centro de Estudios Económicos y Sociales en Salud, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínica. Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
31
|
Williams CE, Hammer TJ, Williams CL. Diversity alone does not reliably indicate the healthiness of an animal microbiome. THE ISME JOURNAL 2024; 18:wrae133. [PMID: 39018234 PMCID: PMC11334719 DOI: 10.1093/ismejo/wrae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Claire E Williams
- Department of Biology, University of Nevada, Reno, NV 89557, United States
| | - Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| | - Candace L Williams
- Conservation Science, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States
| |
Collapse
|
32
|
Widodo ADW, Permana PBD, Setyaningtyas A, Wahyunitisari MR. Time to Positivity of Blood Culture as a Predictor of Causative Pathogens and Survival in Neonatal Sepsis: A Retrospective Cohort Study from Indonesia. Oman Med J 2024; 39:e588. [PMID: 38983906 PMCID: PMC11231517 DOI: 10.5001/omj.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/23/2023] [Indexed: 07/11/2024] Open
Abstract
Objectives In the blood culture procedure for neonatal sepsis, time to positivity (TTP) reflects the pathogenic bacterial load and the time required for empirical antibiotic regimen administration prior to definitive treatment. This study aims to identify the differences in TTP among causative pathogens and its predictive value for the overall survival of neonates with sepsis at a tertiary healthcare center in Indonesia. Methods A retrospective cohort study was conducted from January 2020 to August 2022 at Dr. Soetomo General Hospital, Surabaya, Indonesia. Neonates with blood culture-proven neonatal sepsis were included in the analysis. TTP was defined as the time between the acceptance of a blood culture specimen from the neonatal intensive care unit and reports of positive culture growth by the laboratory. Results Across 125 cases, the median TTP was 58.1 hours (IQR = 24.48). Blood cultures were positive within 48 hours for 41.6% of cases, 72 hours for 86.4%, and 96 hours for 98.4%. A significantly shorter TTP was exhibited by the three major gram-negative organisms (Klebsiella pneumoniae,Acinetobacter baumannii,Enterobacter cloacae) compared to coagulase-negative Staphylococci. The neonatal sepsis mortality rate was 49.6% during the study period. In the Cox multivariate regression model, a shorter TTP was an independently predicted mortality in the entire cohort (hazard ratio (HR) = 0.985, 95% CI: 0.973-0.998) and the gram-negative sepsis cohort group (HR = 0.983, 95% CI: 0.968-0.999). Conclusions TTP predicts different causative pathogens and the overall survival of neonatal sepsis cases at a tertiary healthcare facility in Indonesia.
Collapse
Affiliation(s)
- Agung Dwi Wahyu Widodo
- Integrated Medical Laboratory, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
- Department of Clinical Microbiology, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | | | | | |
Collapse
|
33
|
Dop C, Auvin S, Mondot S, Lepage P, Ilhan ZE. Longitudinal exposure to antiseizure medications shape gut-derived microbiome, resistome, and metabolome landscape. ISME COMMUNICATIONS 2024; 4:ycae123. [PMID: 39526134 PMCID: PMC11544314 DOI: 10.1093/ismeco/ycae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The influence of chronically administered host-targeted drugs on the gut microbiome remains less understood compared to antibiotics. We investigated repetitive exposure effects of three common antiseizure medications [carbamazepine (CBZ), valproic acid, and levetiracetam] on the gut microbial composition, resistome, and metabolome using microcosms constructed from feces of young children. Microcosms were established by cultivating feces for 24 h (C0). These microcosms were daily transferred into fresh media for seven cycles (C1-C7) with antiseizure medications or carrier molecules, followed by four cycles without any drugs (C8-C11). The microbial dynamics and resistome of microcosms at C0, C1, C7, and C11 were assessed with 16S ribosomal ribonucleic acid gene sequencing or shotgun metagenome sequencing and real-time quantitative polymerase chain reaction analysis of the antimicrobial resistance genes, respectively. Metabolites of CBZ-treated and control microcosms at C0, C1, and C7 were evaluated using non-targeted metabolomics. Our findings revealed that the serial transfer approach longitudinally altered the microcosm composition. Among the medications, CBZ had the most substantial impact on the structure and metabolism of the feces-derived microcosms. The microbiome composition partially recovered during the drug-free period. Specifically, Bacteroides and Flavonifractor were depleted and Escherichia and Clostridium were enriched. Additionally, repetitive CBZ exposure increased the abundance and expression of genes related to various antibiotic resistance mechanisms, more specifically, efflux pumps and antibiotic target alteration. CBZ-induced changes in the microbiome were mirrored in the metabolome, with reductions in the citric acid cycle metabolites, glutamine, and spermidine, alongside increased levels of vitamin B6. Our study suggests that repetitive CBZ exposure may negatively impact gut microbial homeostasis and metabolism.
Collapse
Affiliation(s)
- Camille Dop
- Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphane Auvin
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroDiderot, Paris, France
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris (APHP), Robert Debré University Hospital, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stanislas Mondot
- Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Domaine de Vilvert, Jouy-en-Josas, France
| | - Patricia Lepage
- Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Domaine de Vilvert, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Domaine de Vilvert, Jouy-en-Josas, France
| |
Collapse
|
34
|
Cullen JMA, Shahzad S, Dhillon J. A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Front Physiol 2023; 14:1292673. [PMID: 38187136 PMCID: PMC10770260 DOI: 10.3389/fphys.2023.1292673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Abstract
The gut microbiome, hosting a diverse microbial community, plays a pivotal role in metabolism, immunity, and digestion. While the potential of exercise to influence this microbiome has been increasingly recognized, findings remain incongruous. This systematic review examined the effects of exercise on the gut microbiome of human and animal models. Databases (i.e., PubMed, Cochrane Library, Scopus, and Web of Science) were searched up to June 2022. Thirty-two exercise studies, i.e., 19 human studies, and 13 animal studies with a minimum of two groups that discussed microbiome outcomes, such as diversity, taxonomic composition, or microbial metabolites, over the intervention period, were included in the systematic review (PROSPERO registration numbers for human review: CRD42023394223). Results indicated that over 50% of studies found no significant exercise effect on human microbial diversity. When evident, exercise often augmented the Shannon index, reflecting enhanced microbial richness and evenness, irrespective of disease status. Changes in beta-diversity metrics were also documented with exercise but without clear directionality. A larger percentage of animal studies demonstrated shifts in diversity compared to human studies, but without any distinct patterns, mainly due to the varied effects of predominantly aerobic exercise on diversity metrics. In terms of taxonomic composition, in humans, exercise usually led to a decrease in the Firmicutes/Bacteroidetes ratio, and consistent increases with Bacteroides and Roseburia genera. In animal models, Coprococcus, another short chain fatty acid (SCFA) producer, consistently rose with exercise. Generally, SCFA producers were found to increase with exercise in animal models. With regard to metabolites, SCFAs emerged as the most frequently measured metabolite. However, due to limited human and animal studies examining exercise effects on microbial-produced metabolites, including SCFAs, clear patterns did not emerge. The overall risk of bias was deemed neutral. In conclusion, this comprehensive systematic review underscores that exercise can potentially impact the gut microbiome with indications of changes in taxonomic composition. The significant variability in study designs and intervention protocols demands more standardized methodologies and robust statistical models. A nuanced understanding of the exercise-microbiome relationship could guide individualized exercise programs to optimize health. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=394223, identifier CRD42023394223.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
35
|
Kortman GAM, Timmerman HM, Schaafsma A, Stoutjesdijk E, Muskiet FAJ, Nhien NV, van Hoffen E, Boekhorst J, Nauta A. Mothers' Breast Milk Composition and Their Respective Infant's Gut Microbiota Differ between Five Distinct Rural and Urban Regions in Vietnam. Nutrients 2023; 15:4802. [PMID: 38004196 PMCID: PMC10675055 DOI: 10.3390/nu15224802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiota colonization and development in early life is impacted by various host intrinsic (genetic) factors, but also diet, lifestyle, as well as environmental and residential factors upon and after birth. To characterize the impact of maternal nutrition and environmental factors on vaginally born infant gut microbiota composition, we performed an observational study in five distinct geographical areas in Vietnam. Fecal samples of infants (around 39 days old) and fecal and breast milk samples of their mothers (around 28 years) were collected. The microbiota composition of all samples was analyzed by 16S rRNA gene Illumina sequencing and a bioinformatics workflow based on QIIME. In addition, various breast milk components were determined. Strong associations between the geographically determined maternal diet and breast milk composition as well as infant fecal microbiota were revealed. Most notable was the association of urban Ha Noi with relatively high abundances of taxa considered pathobionts, such as Klebsiella and Citrobacter, at the expense of Bifidobacterium. Breast milk composition was most distinct in rural Ha Long Bay, characterized by higher concentrations of, e.g., docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), selenium, and vitamin B12, while it was characterized by, e.g., iron, zinc, and α-linolenic acid (ALA) in Ha Noi. Breast milk iron levels were positively associated with infant fecal Klebsiella and negatively with Bifidobacterium, while the EPA and DHA levels were positively associated with Bifidobacterium. In conclusion, differences between five regions in Vietnam with respect to both maternal breast milk and infant gut microbiota composition were revealed, most likely in part due to maternal nutrition. Thus, there could be opportunities to beneficially steer infant microbiota development in a more desired (rural instead of urban) direction through the mother's diet.
Collapse
Affiliation(s)
| | | | - Anne Schaafsma
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| | - Eline Stoutjesdijk
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Frits A. J. Muskiet
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Nguyen V. Nhien
- National Institute of Food Control, No. 65 Pham Than Duat Str., Mai Dich Ward., Cau Giay Dist., Ha Noi 100000, Vietnam
| | | | - Jos Boekhorst
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands
| | - Arjen Nauta
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
36
|
Madej J, Atanassova T, McGuire S, Cohen B, Weidner M, Zhang Y, Horton DB. Acid-suppressive medication and incidence of chronic childhood immune-mediated diseases: A scoping review. Pediatr Allergy Immunol 2023; 34:e14042. [PMID: 38010007 PMCID: PMC10683867 DOI: 10.1111/pai.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Use of acid-suppressive medications (ASMs), for example, proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs), has been rising along with the incidence of pediatric immune-mediated diseases (IMDs). We conducted a scoping review to characterize the literature about prenatal or pediatric exposure to ASMs in relation to incident pediatric IMDs. METHODS Electronic searches were conducted to identify studies from 2001 to 2023 on (a) prenatal or pediatric exposure to PPIs and/or H2RAs and (b) the risk of developing chronic IMDs during childhood. Eligible studies after title/abstract and full-text screening underwent data abstraction. RESULTS Of 26 eligible studies, 11 focused on prenatal ASM exposure and 16 on pediatric exposure. Asthma was the most commonly investigated outcome (16 studies), followed by other allergic diseases (8), eosinophilic esophagitis (3), inflammatory bowel disease (2), and other autoimmune diseases (2). Positive associations between ASM exposure and pediatric IMD outcomes emerged in all but two recent studies, which reported null or negative associations with allergic diseases. The strength of associations was similar across exposure times (prenatal/pediatric), medications (PPIs/H2RAs), and outcomes. Dose-response relationships were often present (7/11 studies). Reported effects by trimester and age of exposure varied. Commonly reported limitations were residual confounding, exposure misclassification, and outcome misclassification. CONCLUSION In summary, prenatal or pediatric exposure to PPIs and/or H2RAs has frequently, but not exclusively, been associated with the development of asthma, other allergic diseases, and chronic gastrointestinal IMDs. However, concerns remain about confounding and other sources of bias. Prescribers and families should be aware of these possible risks of ASMs.
Collapse
Affiliation(s)
- Joanna Madej
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tania Atanassova
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Sarah McGuire
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Barry Cohen
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Melissa Weidner
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yingtng Zhang
- Robert Wood Johnson Library of Health Sciences, New Brunswick, New Jersey, USA
| | - Daniel B. Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, New Jersey, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| |
Collapse
|
37
|
Luo Y, Zhang Y, Yang Y, Wu S, Zhao J, Li Y, Kang X, Li Z, Chen J, Shen X, He F, Cheng R. Bifidobacterium infantis and 2'-fucosyllactose supplementation in early life may have potential long-term benefits on gut microbiota, intestinal development, and immune function in mice. J Dairy Sci 2023; 106:7461-7476. [PMID: 37641283 DOI: 10.3168/jds.2023-23367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The health benefits of nutritional interventions targeting the gut microbiota in early life are transient, such as probiotics, prebiotics, and synbiotics. This study sought to determine whether supplementation with Bifidobacterium infantis 79 (B79), 2'-fucosyllactose (2'-FL), or both (B79+2'FL) would lead to persistent health benefits in neonatal BALB/c mice. We found that at postnatal day (PND) 21, Ki67 and MUC2 expression increased, while total serum IgE content decreased in the B79, 2'-FL, and B79+2'-FL groups. The gut microbiota structure and composition altered as well. The levels of propionic acid, sIgA, and IL-10 increased in the 2'-FL group. Moreover, butyric acid content increased, while IL-6, IL-12p40, and tumor necrosis factor-α decreased in the B79+2'-FL group. At PND 56, Ki67 and MUC2 expression increased, whereas the gut microbiota remained altered in all 3 groups. The serum total IgG level increased only in the B79+2'-FL group. In conclusion, our study suggests that early-life supplementation with B79, 2'-FL, or their combination persistently alters the gut microbiome and promotes intestinal development; the immunomodulatory capacity of B79 and 2'-FL occurs during weaning, and their combination may persist into adulthood.
Collapse
Affiliation(s)
- Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Zhouyong Li
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Jianguo Chen
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China; Beijing YuGen Pharmaceutical Co. Ltd., 102600 Beijing, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
39
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
40
|
Damianos J, Perumareddi P. Gut Microbiome and Dietar Considerations. Prim Care 2023; 50:493-505. [PMID: 37516516 DOI: 10.1016/j.pop.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The gut microbiome represents a complex microbial ecosystem that exerts direct and indirect effects on other organ systems and contributes to both health and disease. It is sensitive to various stimuli such as childhood immunity, medications, diet, stressors, and sleep. Modulating the gut microbiome can prevent and even treat certain disease states. Although no definitive guidelines exist to support a healthy microbiome, there are several evidence-based interventions proved to improve gut health and reduce the risk for numerous chronic diseases.
Collapse
Affiliation(s)
- John Damianos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Parvathi Perumareddi
- Department of Medicine, Florida Atlantic University, Boca Raton, FL, USA; Charles E Schmidt College of Medicine- Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| |
Collapse
|
41
|
Taibi A, Tokar T, Tremblay J, Gargari G, Streutker CJ, Li B, Pierro A, Guglielmetti S, Tompkins TA, Jurisica I, Comelli EM. Intestinal microRNAs and bacterial taxa in juvenile mice are associated, modifiable by allochthonous lactobacilli, and affect postnatal maturation. mSystems 2023; 8:e0043123. [PMID: 37462361 PMCID: PMC10469672 DOI: 10.1128/msystems.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023] Open
Abstract
The interplay between the intestinal microbiota and host is critical to intestinal ontogeny and homeostasis. MicroRNAs (miRNAs) may be an underlying link. Intestinal miRNAs are microbiota-dependent and, when shed in the lumen, affect resident microorganisms. Yet, longitudinal relationships between intestinal tissue miRNAs, luminal miRNAs, and luminal microorganisms have not been elucidated, especially in early life. Here, we investigated the postnatal cecal miRNA and microbiota populations, their relationship, and their impact on intestinal maturation in specific pathogen-free mice; we also assessed if they can be modified by intervention with allochthonous probiotic lactobacilli. We report that cecal and cecal content miRNA and microbiota signatures are temporally regulated, correlated, and modifiable by probiotics with implications for intestinal maturation. These findings help understand causal relationships within the gut ecosystem and provide a basis for preventing and managing their alterations in diseases throughout life. IMPORTANCE The gut microbiota affects intestinal microRNA (miRNA) signatures and is modified by host-derived luminal miRNA. This suggests the existence of close miRNA-microbiota relationships that are critical to intestinal homeostasis. However, an integrative analysis of these relationships and their evolution during intestinal postnatal maturation is lacking. We provide a system-level longitudinal analysis of miRNA-microbiota networks in the intestine of mice at the weaning transition, including tissue and luminal miRNA and luminal microbiota. To address causality and move toward translational applications, we used allochthonous probiotic lactobacilli to modify these longitudinal relationships and showed that they are critical for intestinal maturation in early life. These findings contribute to understand mechanisms that underlie the maturation of the intestinal ecosystem and suggest that interventions aiming at maintaining, or restoring, homeostasis cannot prescind from considering relationships among its components.
Collapse
Affiliation(s)
- Amel Taibi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, Montréal, Quebec, Canada
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Catherine J. Streutker
- Department of Laboratory Medicine and Pathobiology, Unity Health Toronto: St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simone Guglielmetti
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
43
|
McMath AL, Aguilar-Lopez M, Cannavale CN, Khan NA, Donovan SM. A systematic review on the impact of gastrointestinal microbiota composition and function on cognition in healthy infants and children. Front Neurosci 2023; 17:1171970. [PMID: 37389363 PMCID: PMC10306408 DOI: 10.3389/fnins.2023.1171970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Evidence from animal models or children with neurodevelopmental disorders has implicated the gut microbiome (GM) in neurocognitive development. However, even subclinical impairement of cognition can have negative consequences, as cognition serves as the foundation for skills necessary to succeed in school, vocation and socially. The present study aims to identify gut microbiome characteristics or changes in gut microbiome characteristics that consistently associate with cognitive outcomes in healthy, neurotypical infants and children. Of the 1,520 articles identified in the search, 23 were included in qualitative synthesis after applying exclusion criteria. Most studies were cross-sectional and focused on behavior or motor and language skills. Bifidobacterium, Bacteroides, Clostridia, Prevotella, and Roseburia were related to these aspects of cognition across several studies. While these results support the role of GM in cognitive development, higher quality studies focused on more complex cognition are needed to understand the extent to which the GM contributes to cognitive development.
Collapse
Affiliation(s)
- Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Miriam Aguilar-Lopez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Corinne N. Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A. Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
44
|
Reingold SM, Grossman Z, Hadjipanayis A, Del Torso S, Valiulis A, Dembinski L, Ashkenazi S. Pediatric antibiotic stewardship programs in Europe: a pilot survey among delegates of The European Academy of Pediatrics. Front Pediatr 2023; 11:1157542. [PMID: 37342529 PMCID: PMC10277725 DOI: 10.3389/fped.2023.1157542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is one of the leading causes of morbidity and mortality worldwide. Efforts to promote the judicious use of antibiotics and contain AMR are a priority of several medical organizations, including the WHO. One effective way to achieve this goal is the deployment of antibiotic stewardship programs (ASPs). This study aimed to survey the current situation of pediatric ASPs in European countries and establish a baseline for future attempts to harmonize pediatric ASPs and antibiotic use in Europe. Methods A web-based survey was conducted among national delegates of the European Academy of Paediatrics (EAP). The survey assessed the presence of pediatric ASPs in the representatives' countries in the inpatient and outpatient settings, the staff included in the programs, and their detailed activities regarding antibiotic use. Results Of the 41 EAP delegates surveyed, 27 (66%) responded. Inpatient pediatric ASPs were reported in 74% (20/27) countries, and outpatient programs in 48% (13/27), with considerable variability in their composition and activities. Guidelines for managing pediatric infectious diseases were available in nearly all countries (96%), with those for neonatal infections (96%), pneumonia (93%), urinary tract (89%), peri-operative (82%), and soft tissue (70%) infections being the most common. Pediatric ASPs were reported at the national (63%), institutional (41%), and regional/local (<15%) levels. Pediatricians with infectious disease training (62%) and microbiologists (58%) were the most common members of the program personnel, followed by physician leaders (46%), infectious disease/infection control physicians (39%), pharmacists (31%), and medical director representatives (15%). Activities of the pediatric ASPs included educational programs (85%), monitoring and reporting of antibiotic use (70%) and resistance (67%), periodic audits with feedback (44%), prior approval (44%), and post-prescription review of selected antibiotic agents (33%). Conclusion Although pediatric ASPs exist in most European countries, their composition and activities vary considerably across countries. Initiatives to harmonize comprehensive pediatric ASPs across Europe are needed.
Collapse
Affiliation(s)
- Stephen M. Reingold
- Department of Pediatrics, Meuhedet Health Maintenance Organization, Tel Aviv, Israel
| | - Zachi Grossman
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Pediatrics, Maccabi Health Services, Tel Aviv, Israel
| | - Adamos Hadjipanayis
- Medical School, European University Cyprus, Nicosia, Cyprus
- Department of Paediatrics, Larnaca General Hospital, Larnaca, Cyprus
| | - Stefano Del Torso
- Department of Pediatrics, ChildCare WorldWide—CCWWItalia OdV, Padova, Italy
| | - Arunas Valiulis
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Medical Faculty of Vilnius University, Vilnius, Lithuania
- Human Ecology Research Group, Department of Public Health, Institute of Health Sciences, Medical Faculty of Vilnius University, Vilnius, Lithuania
| | - Lukasz Dembinski
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
45
|
Awan RU, Gangu K, Nguyen A, Chourasia P, Borja Montes OF, Butt MA, Muzammil TS, Afzal RM, Nabeel A, Shekhar R, Sheikh AB. COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database. Infect Dis Rep 2023; 15:279-291. [PMID: 37218819 DOI: 10.3390/idr15030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
The incidence of Clostridioides difficile infection (CDI) has been increasing compared to pre-COVID-19 pandemic levels. The COVID-19 infection and CDI relationship can be affected by gut dysbiosis and poor antibiotic stewardship. As the COVID-19 pandemic transitions into an endemic stage, it has become increasingly important to further characterize how concurrent infection with both conditions can impact patient outcomes. We performed a retrospective cohort study utilizing the 2020 NIS Healthcare Cost Utilization Project (HCUP) database with a total of 1,659,040 patients, with 10,710 (0.6%) of those patients with concurrent CDI. We found that patients with concurrent COVID-19 and CDI had worse outcomes compared to patients without CDI including higher in-hospital mortality (23% vs. 13.4%, aOR: 1.3, 95% CI: 1.12-1.5, p = 0.01), rates of in-hospital complications such as ileus (2.7% vs. 0.8%, p < 0.001), septic shock (21.0% vs. 7.2%, aOR: 2.3, 95% CI: 2.1-2.6, p < 0.001), length of stay (15.1 days vs. 8 days, p < 0.001) and overall cost of hospitalization (USD 196,012 vs. USD 91,162, p < 0.001). Patients with concurrent COVID-19 and CDI had increased morbidity and mortality, and added significant preventable burden on the healthcare system. Optimizing hand hygiene and antibiotic stewardship during in-hospital admissions can help to reduce worse outcomes in this population, and more efforts should be directly made to reduce CDI in hospitalized patients with COVID-19 infection.
Collapse
Affiliation(s)
- Rehmat Ullah Awan
- Department of Internal Medicine, Ochsner Rush Medical Center, Meridian, MS 39301, USA
| | - Karthik Gangu
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anthony Nguyen
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Prabal Chourasia
- Department of Hospital Medicine, Mary Washington Hospital, Fredericksburg, VA 22401, USA
| | - Oscar F Borja Montes
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Muhammad Ali Butt
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | | | - Rao Mujtaba Afzal
- Department of Internal Medicine, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Ambreen Nabeel
- Department of Internal Medicine, Ochsner Rush Medical Center, Meridian, MS 39301, USA
| | - Rahul Shekhar
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Abu Baker Sheikh
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| |
Collapse
|
46
|
Goodoory VC, Ford AC. Antibiotics and Probiotics for Irritable Bowel Syndrome. Drugs 2023; 83:687-699. [PMID: 37184752 DOI: 10.1007/s40265-023-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/16/2023]
Abstract
Irritable bowel syndrome (IBS) is a disorder of a gut-brain interaction characterised by abdominal pain and a change in stool form or frequency. Current symptom-based definitions and the classification of IBS promote heterogeneity amongst patients, meaning that there may be several different pathophysiological abnormalities leading to similar symptoms. Although our understanding of IBS is incomplete, there are several indicators that the microbiome may be involved in a subset of patients. Techniques including a faecal sample analysis, colonic biopsies, duodenal aspirates or surrogate markers, such as breath testing, have been used to examine the gut microbiota in individuals with IBS. Because of a lack of a clear definition of what constitutes a healthy gut microbiota, and the fact that alterations in gut microbiota have only been shown to be associated with IBS, a causal relationship is yet to be established. We discuss several hypotheses as to how dysbiosis may be responsible for IBS symptoms, as well as potential treatment strategies. We review the current evidence for the use of antibiotics and probiotics to alter the microbiome in an attempt to improve IBS symptoms. Rifaximin, a non-absorbable antibiotic, is the most studied antibiotic and has now been licensed for use in IBS with diarrhoea in the USA, but the drug remains unavailable in many countries for this indication. Current evidence also suggests that certain probiotics, including Lactobacillus plantarum DSM 9843 and Bifidobacterium bifidum MIMBb75, may be efficacious in some patients with IBS. Finally, we describe the future challenges facing us in our attempt to modulate the microbiome to treat IBS.
Collapse
Affiliation(s)
- Vivek C Goodoory
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
- Leeds Gastroenterology Institute, St. James's University Hospital, Room 125, 4th Floor, Bexley Wing, Beckett Street, Leeds, LS9 7TF, UK
| | - Alexander C Ford
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK.
- Leeds Gastroenterology Institute, St. James's University Hospital, Room 125, 4th Floor, Bexley Wing, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
47
|
Straughen JK, Sitarik AR, Wegienka G, Cole Johnson C, Johnson-Hooper TM, Cassidy-Bushrow AE. Association between prenatal antimicrobial use and offspring attention deficit hyperactivity disorder. PLoS One 2023; 18:e0285163. [PMID: 37134093 PMCID: PMC10156013 DOI: 10.1371/journal.pone.0285163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Gut-brain cross-talk may play an important role in modulating neurodevelopment. Few studies have examined the association between antimicrobials that influence infant gut microbiota assemblage and attention deficit hyperactivity disorder (ADHD). OBJECTIVE To examine the association between maternal prenatal antimicrobial use and ADHD in offspring at 10 years of age. METHODS Data are from the Wayne County Health, Environment, Allergy and Asthma Longitudinal Study, a racially and socioeconomically diverse birth cohort in metropolitan Detroit, Michigan. Maternal antimicrobial use was extracted from the medical record. ADHD diagnoses were based on parental report at the 10-year study visit. Poisson regression models with robust error variance were used to calculate risk ratios (RR). Cumulative frequency of exposure to antibiotics, and effect modification were also evaluated. RESULTS Among the 555 children included in the analysis, 108 were diagnosed with ADHD. During pregnancy, 54.1% of mothers used antibiotics while 18.7% used antifungals. Overall, there was no evidence of an association between prenatal antibiotic exposure and ADHD (RR [95% CI] = 0.98 [0.75, 1.29]), but there was an increased risk of ADHD among those with mothers using 3+ courses of antibiotics (RR [95%CI] = 1.58 [1.10, 2.29]). Prenatal exposure to antifungals was associated with a 1.6 times higher risk of ADHD (RR [95% CI] = 1.60 [1.19, 2.15]). In examining effect modification by child sex for antifungal use, there was no evidence of an association among females (RR [95% CI] = 0.97 [0.42, 2.23]), but among males, prenatal antifungal use was associated with 1.82 times higher risk of ADHD (RR [95% CI] = 1.82 [1.29, 2.56]). CONCLUSIONS Maternal prenatal antifungal use and frequent prenatal antibiotic use are associated with an increased risk of ADHD in offspring at age 10. These findings highlight the importance of the prenatal environment and the need for careful use of antimicrobials.
Collapse
Affiliation(s)
- Jennifer K. Straughen
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Ganesa Wegienka
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Christine Cole Johnson
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Tisa M. Johnson-Hooper
- Department of Pediatrics, Henry Ford Hospital, Detroit, Michigan, United States of America
- Center for Autism and Developmental Disabilities, Henry Ford Health, Detroit, Michigan, United States of America
| | - Andrea E. Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
48
|
Jung J, Popella L, Do PT, Pfau P, Vogel J, Barquist L. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server. RNA (NEW YORK, N.Y.) 2023; 29:570-583. [PMID: 36750372 PMCID: PMC10158992 DOI: 10.1261/rna.079263.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/10/2023] [Indexed: 05/06/2023]
Abstract
Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (make antisense oligomers now), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.
Collapse
Affiliation(s)
- Jakob Jung
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Linda Popella
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Phuong Thao Do
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Patrick Pfau
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
49
|
Chang YC, Wu MC, Wu HJ, Liao PL, Wei JCC. Prenatal and early-life antibiotic exposure and the risk of atopic dermatitis in children: A nationwide population-based cohort study. Pediatr Allergy Immunol 2023; 34:e13959. [PMID: 37232285 DOI: 10.1111/pai.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) contributes to substantial social and financial costs in public health care systems. Antibiotic exposure during pregnancy has been proposed as a risk factor, but findings remain inconsistent. The aim of this study was to investigate the association between prenatal antibiotic use and childhood AD. METHODS We performed a population-based cohort study using data collected from the Taiwan Maternal and Child Health Database from 2009 to 2016. Associations were determined using Cox proportional hazards model and were adjusted for several potential covariates, including maternal atopic disorders and gestational infections. Children with and without maternal predispositions of atopic diseases and postnatal antibiotic/acetaminophen exposures within 1 year were stratified to identify the subgroups at risk. RESULTS A total of 1,288,343 mother-child pairs were identified and 39.5% received antibiotics prenatally. Maternal antibiotic use during pregnancy was slightly positively associated with childhood AD (aHR 1.04, 95% CI 1.03-1.05), especially in the first and second trimesters. An apparent dose-response pattern was observed with an 8% increased risk when the exposure was ≥5 courses prenatally (aHR 1.08, 95% CI 1.06-1.11). Subgroup analysis showed the positive association remained significant regardless of postnatal infant antibiotic use, but the risk attenuated to null in infants who were not exposed to acetaminophen (aHR 1.01, 95% CI 0.96-1.05). The associations were higher in children whose mothers were without AD compared to those whose mothers were with AD. In addition, postnatal antibiotic or acetaminophen exposure of infants was associated with an increased risk of developing AD after 1 year of age. CONCLUSION Maternal antibiotic use during pregnancy was associated with an increased risk of childhood AD in a dose-related manner. Further research may be warranted to investigate this variable using a prospectively designed study, and also to examine whether or not this association is specifically related to pregnancy.
Collapse
Affiliation(s)
- Yu-Chuan Chang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Meng-Che Wu
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|