1
|
Marakalala MJ, Martinez FO, Plüddemann A, Gordon S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol 2018; 9:1028. [PMID: 29875747 PMCID: PMC5974223 DOI: 10.3389/fmicb.2018.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O. Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
McCurdy S, Liu CA, Yap J, Boisvert WA. Potential role of IL-37 in atherosclerosis. Cytokine 2017; 122:154169. [PMID: 28988706 DOI: 10.1016/j.cyto.2017.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022]
Abstract
IL-37 is a member of the IL-1 family, but unlike most other members of this family of cytokines, it has wide-ranging anti-inflammatory properties. Initially shown to bind IL-18 binding protein and prevent IL-18-mediated inflammation, its known role has been expanded to include distinct pathways, both intracellular involving the transcription factor Smad3, and extracellular via binding to the orphan receptor IL-1R8. A number of recent publications investigating the role of IL-37 in atherosclerosis and ischemic heart disease have revealed promising therapeutic value of the cytokine. Although research concerning the role of IL-37 and its mechanism in atherosclerosis is relatively scant, there are a number of well-known atherosclerotic processes that this cytokine can mediate with the potential of modulating the disease progression itself. This review will probe in detail the effects of IL-37 on important pathological processes such as inflammation, dysregulated lipid metabolism, and apoptosis, by analyzing existing data as well as exploring the potential of this cytokine to influence these properties.
Collapse
Affiliation(s)
- Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Chloe A Liu
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
4
|
Pfeiler S, Khandagale AB, Magenau A, Nichols M, Heijnen HFG, Rinninger F, Ziegler T, Seveau S, Schubert S, Zahler S, Verschoor A, Latz E, Massberg S, Gaus K, Engelmann B. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI. Sci Rep 2016; 6:34440. [PMID: 27694929 PMCID: PMC5046072 DOI: 10.1038/srep34440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation.
Collapse
Affiliation(s)
- Susanne Pfeiler
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Avinash B Khandagale
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Astrid Magenau
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maryana Nichols
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Harry F G Heijnen
- Laboratory of Clinical Chemistry and Haematology and Cell Microscopy Center, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Franz Rinninger
- Universitätsklinik Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Tilman Ziegler
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Stephanie Seveau
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sören Schubert
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, 80336, Germany
| | - Stefan Zahler
- Institut für Pharmazeutische Biologie, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Admar Verschoor
- Institut für Systemische Entzündungsforschung, Universität zu Lübeck, Lübeck, 23538, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, 53127, Germany.,Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA.,German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| |
Collapse
|