1
|
Washizaki A, Sakiyama A, Ando H. Phage-specific antibodies: are they a hurdle for the success of phage therapy? Essays Biochem 2024:EBC20240024. [PMID: 39254211 DOI: 10.1042/ebc20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Phage therapy has attracted attention again owing to the increasing number of drug-resistant bacteria. Although the efficacy of phage therapy has been reported, numerous studies have indicated that the generation of phage-specific antibodies resulting from phage administration might have an impact on clinical outcomes. Phage-specific antibodies promote phage uptake by macrophages and contribute to their rapid clearance from the body. In addition, phage-specific neutralizing antibodies bind to the phages and diminish their antibacterial activity. Thus, phage-specific antibody production and its role in phage therapy have been analyzed both in vitro and in vivo. Strategies for prolonging the blood circulation time of phages have also been investigated. However, despite these efforts, the results of clinical trials are still inconsistent, and a consensus on whether phage-specific antibodies influence clinical outcomes has not yet been reached. In this review, we summarize the phage-specific antibody production during phage therapy. In addition, we introduce recently performed clinical trials and discuss whether phage-specific antibodies affect clinical outcomes and what we can do to further improve phage therapy regimens.
Collapse
Affiliation(s)
- Ayaka Washizaki
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Arata Sakiyama
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Venture Unit Engineered Phage Therapy, Discovery Accelerator, Astellas Pharma Inc., Tsukuba City, Ibaraki 305-8585, Japan
| |
Collapse
|
2
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
3
|
Pelagalli C, Sera DJ, DeGiorgis JA, Cornely K. Mycobacteriophage maravista: a cluster F1 phage discovered on Cape Cod, Massachusetts. Microbiol Resour Announc 2024; 13:e0050224. [PMID: 38860805 PMCID: PMC11256854 DOI: 10.1128/mra.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Mycobacterium virus Maravista, a member of the family Gracegardnervirianae and species Cheoctovirus, is an F1 cluster phage that infects Mycobacterium smegmatis mc²155. The Maravista genome has 61.3% GC content, is 60,140 bp in length, and encodes 104 putative genes. Maravista encodes two putative glycosyltransferases, suggesting glycosylation of its capsid protein.
Collapse
Affiliation(s)
- Charles Pelagalli
- Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island, USA
| | - Debbie-Jacobs Sera
- Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph A. DeGiorgis
- Department of Biology, Providence College, Providence, Rhode Island, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island, USA
| |
Collapse
|
4
|
O'Connell LM, Coffey A, O'Mahony JM. Genomic analysis of seven mycobacteriophages identifies three novel species with differing phenotypic stabilities. Heliyon 2024; 10:e27932. [PMID: 38515691 PMCID: PMC10955285 DOI: 10.1016/j.heliyon.2024.e27932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, case studies have been published regarding the application of mycobacteriophage (MP) therapy (MPT) in patients with multi-antibiotic-resistant infections. A major limitation in the development of MPT is the paucity of therapeutically useful MP. As there are approximately 10,000 MP that have yet to be sequenced, it is possible that characterization of this cohort would increase the repertoire of useful MP. This study aims to contribute to such a strategy, by characterizing a cohort of 7 mycobacteriophages. Sequencing analyses revealed that the MP have unique sequences, and subsequent gene annotation revealed differences in gene organization. Notably, MP LOCARD has the largest genome and operons encoding for glycosyltransferases. Taxonomic analysis executed with VIRIDIC, Gegenees and VICTOR revealed that LOCARD belongs to a different genus than the other phages and is the foundational member of one of three novel species identified in this study. LOCARD, LOCV2, and LOCV5 were selected as representative members of their species and subjected to phenotypic analyses to compare their stability under biologically and industrially relevant conditions. Again LOCARD stood out, as it was unaffected by the typical temperatures (37 °C) and salinity (0.9%) experienced in mammals, while the viability of LOCV2 and LOCV5 was significantly reduced. LOCARD was also tolerant to pH 10, low levels of antiviral detergent and was the least impacted by a single freeze-thaw cycle. When all these results are considered, it indicates that LOCARD in particular, has potential therapeutic and/or diagnostics applications, given its resilience towards physiological and storage conditions.
Collapse
Affiliation(s)
- Laura M. O'Connell
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M. O'Mahony
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
5
|
Szymanski CM. Bacteriophages and their unique components provide limitless resources for exploitation. Front Microbiol 2024; 15:1342544. [PMID: 38380101 PMCID: PMC10877033 DOI: 10.3389/fmicb.2024.1342544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Christine M. Szymanski
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Parent KN. The phage fought the cells, and the phage won: a satellite symposium at the ASV 2023 annual meeting. J Virol 2023; 97:e0142023. [PMID: 37991366 PMCID: PMC10734453 DOI: 10.1128/jvi.01420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
This satellite symposium was focused on the molecular arms race between bacteria and their predators, the bacteriophages: who's the friend and who's the foe? This Gem recounts highlights of the talks and presents food for thought and additional reflections on the current state of the field.
Collapse
Affiliation(s)
- Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Ouyang X, Li X, Song J, Wang H, Wang S, Fang R, Li Z, Song N. Mycobacteriophages in diagnosis and alternative treatment of mycobacterial infections. Front Microbiol 2023; 14:1277178. [PMID: 37840750 PMCID: PMC10568470 DOI: 10.3389/fmicb.2023.1277178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Antimicrobial resistance is an increasing threat to human populations. The emergence of multidrug-resistant "superbugs" in mycobacterial infections has further complicated the processes of curing patients, thereby resulting in high morbidity and mortality. Early diagnosis and alternative treatment are important for improving the success and cure rates associated with mycobacterial infections and the use of mycobacteriophages is a potentially good option. Since each bacteriophage has its own host range, mycobacteriophages have the capacity to detect specific mycobacterial isolates. The bacteriolysis properties of mycobacteriophages make them more attractive when it comes to treating infectious diseases. In fact, they have been clinically applied in Eastern Europe for several decades. Therefore, mycobacteriophages can also treat mycobacteria infections. This review explores the potential clinical applications of mycobacteriophages, including phage-based diagnosis and phage therapy in mycobacterial infections. Furthermore, this review summarizes the current difficulties in phage therapy, providing insights into new treatment strategies against drug-resistant mycobacteria.
Collapse
Affiliation(s)
- Xudong Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Xiaotian Li
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Jinmiao Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Hui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Shuxian Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Ren Fang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| |
Collapse
|