1
|
Dos Santos Dias L, Lionakis MS. IL-17: A Critical Cytokine for Defense against Oral Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1049-1051. [PMID: 39374468 DOI: 10.4049/jimmunol.2400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Collapse
Affiliation(s)
- Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Li Y, Vyas SP, Mehta I, Asada N, Dey I, Taylor TC, Bechara R, Amatya N, Aggor FEY, Coleman BM, Li DD, Yamamoto K, Ezenwa O, Sun Y, Sterneck E, McManus CJ, Panzer U, Biswas PS, Savan R, Das J, Gaffen SL. The RNA binding protein Arid5a drives IL-17-dependent autoantibody-induced glomerulonephritis. J Exp Med 2024; 221:e20240656. [PMID: 39058386 PMCID: PMC11284280 DOI: 10.1084/jem.20240656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autoantibody-mediated glomerulonephritis (AGN) arises from dysregulated renal inflammation, with urgent need for improved treatments. IL-17 is implicated in AGN and drives pathology in a kidney-intrinsic manner via renal tubular epithelial cells (RTECs). Nonetheless, downstream signaling mechanisms provoking kidney pathology are poorly understood. A noncanonical RNA binding protein (RBP), Arid5a, was upregulated in human and mouse AGN. Arid5a-/- mice were refractory to AGN, with attenuated myeloid infiltration and impaired expression of IL-17-dependent cytokines and transcription factors (C/EBPβ, C/EBPδ). Transcriptome-wide RIP-Seq revealed that Arid5a inducibly interacts with conventional IL-17 target mRNAs, including CEBPB and CEBPD. Unexpectedly, many Arid5a RNA targets corresponded to translational regulation and RNA processing pathways, including rRNAs. Indeed, global protein synthesis was repressed in Arid5a-deficient cells, and C/EBPs were controlled at the level of protein rather than RNA accumulation. IL-17 prompted Arid5a nuclear export and association with 18S rRNA, a 40S ribosome constituent. Accordingly, IL-17-dependent renal autoimmunity is driven by Arid5a at the level of ribosome interactions and translation.
Collapse
Affiliation(s)
- Yang Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shachi P Vyas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nariaki Asada
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tiffany C Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rami Bechara
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix E Y Aggor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M Coleman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - De-Dong Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenta Yamamoto
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yeque Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ulf Panzer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
4
|
Mills KAM, Aufiero MA, Hohl TM. Epithelial responses to fungal pathogens. Curr Opin Microbiol 2024; 80:102508. [PMID: 38986398 PMCID: PMC11331878 DOI: 10.1016/j.mib.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Epithelial cells orchestrate immune responses against fungal pathogens. This review highlights advances in integrating epithelial cells in immune responses against inhaled molds and dimorphic fungi, and against Candida species that colonize mucosal surfaces. In the lung, epithelial cells respond to interleukin-1 (IL-1) and interferon signaling to regulate effector cell influx and fungal killing. In the alimentary and vulvovaginal tracts, epithelial cells modulate fungal commensalism, invasive growth, and local immune tone, in part by responding to damage caused by candidalysin, a C. albicans peptide toxin, and through IL-17-dependent release of antimicrobial peptides that contribute to Candida colonization resistance. Understanding fungal-epithelial interactions in mammalian models of disease is critical to predict vulnerabilities and to identify opportunities for immune-based strategies to treat fungal infections.
Collapse
Affiliation(s)
- Kathleen A M Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Aggor FEY, Bertolini M, Coleman BM, Taylor TC, Ponde NO, Gaffen SL. Combinatorial actions of IL-22 and IL-17 drive optimal immunity to oral candidiasis through SPRRs. PLoS Pathog 2024; 20:e1012302. [PMID: 38949991 PMCID: PMC11216582 DOI: 10.1371/journal.ppat.1012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Oropharyngeal candidiasis (OPC) is the most common human fungal infection, arising typically from T cell immune impairments. IL-17 and IL-22 contribute individually to OPC responses, but here we demonstrate that the combined actions of both cytokines are essential for resistance to OPC. Mice lacking IL-17RA and IL-22RA1 exhibited high fungal loads in esophagus- and intestinal tract, severe weight loss, and symptoms of colitis. Ultimately, mice succumbed to infection. Dual loss of IL-17RA and IL-22RA impaired expression of small proline rich proteins (SPRRs), a class of antimicrobial effectors not previously linked to fungal immunity. Sprr2a1 exhibited direct candidacidal activity in vitro, and Sprr1-3a-/- mice were susceptible to OPC. Thus, cooperative actions of Type 17 cytokines mediate oral mucosal anti-Candida defenses and reveal a role for SPRRs.
Collapse
Affiliation(s)
- Felix E. Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
| | - Martinna Bertolini
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh, Department of Periodontics and Preventive Dentistry, Pittsburgh, Pennsylvania, United States of America
| | - Bianca M. Coleman
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
| | - Tiffany C. Taylor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
| | - Nicole O. Ponde
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
6
|
Mills KAM, Westermann F, Espinosa V, Rosiek E, Desai JV, Aufiero MA, Guo Y, Mitchell KA, Tuzlak S, De Feo D, Lionakis MS, Rivera A, Becher B, Hohl TM. GM-CSF-mediated epithelial-immune cell crosstalk orchestrates pulmonary immunity to Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574062. [PMID: 38260364 PMCID: PMC10802277 DOI: 10.1101/2024.01.03.574062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aspergillus fumigatus causes life-threatening mold pneumonia in immune compromised patients, particularly in those with quantitative or qualitative defects in neutrophils. While innate immune cell crosstalk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced IL-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, with the latter being essential for host survival. Our findings establish SPC + epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens. HIGHLIGHTS GM-CSF is essential for host defense against A. fumigatus in the lung IL-1 and IFN-λ promote GM-CSF production by lung epithelial cells in parallelEpithelial cell-derived GM-CSF increases neutrophil accumulation and fungal killing capacityEpithelial cells preferentially upregulate GM-CSF in local sites of inflammation. GRAPHICAL ABSTRACT
Collapse
|