1
|
Xia H, Dai Y, Zhao C, Zhang H, Shi Y, Lou H. Chromatographic and mass spectrometric technologies for chemical analysis of Euodiae fructus: A review. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:5-29. [PMID: 36442477 DOI: 10.1002/pca.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.
Collapse
Affiliation(s)
- Hongmin Xia
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Chengxin Zhao
- The People's Republic of China Taian Customs, Taian, China
| | - Huimin Zhang
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongxiang Lou
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
2
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
4
|
Liu Y, Zhou W, Mao Z, Chen Z. Analysis of Evodiae Fructus by capillary electrochromatography-mass spectrometry with methyl-vinylimidazole functionalized organic polymer monolilth as stationary phases. J Chromatogr A 2019; 1602:474-480. [PMID: 31202495 DOI: 10.1016/j.chroma.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
Evodiae Fructus is used as a traditional Chinese medicine for the treatment of several kinds of diseases with its bioactive constituents. In this study, a capillary electrochromatography-mass spectrometry (CEC-MS) method was developed to determine three bioactive compounds including evodiamine, rutaecarpine and limonin in Evodiae Fructus fruit. Home-developed monolithic columns with methyl-vinylimidazole functionalized organic polymer monolilth as stationary phases were used in CEC-MS with excellent separation selectivity and high efficiency. The CEC-MS methods provided 4-16 folds improvement of LODs when compared with CEC-UV method. The conditions, which could affect separation efficiency and detection sensitivity, were optimized. Under optimum conditions, baseline separation with high detection sensitivity was obtained. The method showed good linearity (R2 >0.99) of 0.8-160 μg mL-1 with low limits of detection of 0.15-0.31 μg mL-1. Relative standard deviations of migration time and relative peak areas were <13.89%. Recoveries of evodiamine, rutaecarpine and limonin in Evodiae Fructus fruit were tested and calculated, which ranged from 102% to 113%. Finally, the three bioactive compounds in Evodiae Fructus herb samples from different regions were analyzed and studied. It has been demonstrated that the developed method has great potential for quality control of Evodiae Fructus herb.
Collapse
Affiliation(s)
- Yikun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zhenkun Mao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
5
|
Fanali S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis 2017; 38:1822-1829. [PMID: 28256745 DOI: 10.1002/elps.201600573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/04/2023]
Abstract
Nano-liquid chromatography (nano-LC) and CEC are microfluidic techniques mainly used for analytical purposes. They have been applied to the separation and analysis of a large number of compounds, e.g., peptides, proteins, drugs, enantiomers, antibiotics, pesticides, nutraceutical, etc. Analytes separation is carried out into capillaries containing selected stationary phase. The mobile phase is moved either by a pump (nano-LC) or by an EOF, respectively. The two tools can offer some advantages over conventional techniques, e.g., high selectivity, separation efficiency, resolution, short analysis time and consumption of low volumes of mobile phase. Flow rates in the range 50-800 nL/min are usually applied. The low flow rate reduces the chromatographic dilution increasing the mass sensitivity. Special attention must be paid in avoiding peak dispersion selecting the appropriate detector, injector and tube connection. Finally due to the low flow rate these microfluidic techniques can be easily coupled with mass spectrometry.
Collapse
Affiliation(s)
- Salvatore Fanali
- Institute of Chemical Methodologies, Italian National Research Council, Monterotondo, Italy
| |
Collapse
|
6
|
|
7
|
Mikšík I. Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci 2016; 40:251-271. [DOI: 10.1002/jssc.201600908] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
8
|
A method for identifying discriminative isoform-specific peptides for clinical proteomics application. BMC Genomics 2016; 17 Suppl 7:522. [PMID: 27557076 PMCID: PMC5001247 DOI: 10.1186/s12864-016-2907-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Clinical proteomics application aims at solving a specific clinical problem within the context of a clinical study. It has been growing rapidly in the field of biomarker discovery, especially in the area of cancer diagnostics. Until recently, protein isoform has not been viewed as a new class of early diagnostic biomarkers for clinical proteomics. A protein isoform is one of different forms of the same protein. Different forms of a protein may be produced from single-nucleotide polymorphisms (SNPs), alternative splicing, or post-translational modifications (PTMs). Previous studies have shown that protein isoforms play critical roles in tumorigenesis, disease diagnosis, and prognosis. Identifying and characterizing protein isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods such as EST sequencing, Microarray profiling (exon array, Exon-exon junction array), mRNA next-generation sequencing used for protein isoform determination: 1) not in the protein level, 2) no connectivity about connection of nonadjacent exons, 3) no SNPs and PTMs, and 4) low reproducibility. Moreover, there exist the computational challenges of clinical proteomics studies: 1) low sensitivity of instruments, 2) high data noise, and 3) high variability and low repeatability, although recent advances in clinical proteomics technology, LC-MS/MS proteomics, have been used to identify candidate molecular biomarkers in diverse range of samples, including cells, tissues, serum/plasma, and other types of body fluids. Results Therefore, in the paper, we presented a peptidomics method for identifying cancer-related and isoform-specific peptide for clinical proteomics application from LC-MS/MS. First, we built a Peptidomic Database of Human Protein Isoforms, then created a peptidomics approach to perform large-scale screen of breast cancer-associated alternative splicing isoform markers in clinical proteomics, and lastly performed four kinds of validations: biological validation (explainable index), exon array, statistical validation of independent samples, and extensive pathway analysis. Conclusions Our results showed that alternative splicing isoform makers can act as independent markers of breast cancer and that the method for identifying cancer-specific protein isoform biomarkers from clinical proteomics application is an effective one for increasing the number of identified alternative splicing isoform markers in clinical proteomics. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2907-8) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Sepehrifar R, Boysen RI, Danylec B, Yang Y, Saito K, Hearn MT. Application of pH-responsive poly(2-dimethyl-aminoethylmethacrylate)-block-poly(acrylic acid) coatings for the open-tubular capillary electrochromatographic analysis of acidic and basic compounds. Anal Chim Acta 2016; 917:117-25. [DOI: 10.1016/j.aca.2016.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
|
10
|
Moravcová D, Rantamäki AH, Duša F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 2016; 37:880-912. [PMID: 26800083 DOI: 10.1002/elps.201500520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
Abstract
Here, we have reviewed separation studies utilizing monolithic capillary columns for separation of compounds preceding MS analysis. The review is divided in two parts according to the used separation method, namely CEC and capillary LC (cLC). Based on our overview, monolithic CEC-MS technique have been more focused on the syntheses of highly specialized and selective separation phase materials for fast and efficient separation of specific types of analytes. In contrast, monolithic cLC-MS is more widely used and is often employed, for instance, in the analysis of oligonucleotides, metabolites, and peptides and proteins in proteomic studies. While poly(styrene-divinylbenzene)-based and silica-based monolithic capillaries found their place in proteomic analyses, the other laboratory-synthesized monoliths still wait for their wider utilization in routine analyses. The development of new monolithic materials will most likely continue due to the demand of more efficient and rapid separation of increasingly complex samples.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | | - Filip Duša
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
11
|
Zhang X, Ibrahim YM, Chen TC, Kyle JE, Norheim RV, Monroe ME, Smith RD, Baker ES. Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations. Analyst 2015; 140:6955-63. [PMID: 26140287 PMCID: PMC4586386 DOI: 10.1039/c5an00897b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Multidimensional high throughput separations are ideal for analyzing distinct ion characteristics simultaneously in one analysis. We report on the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (μFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The μFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional FAIMS compensation fields, IMS drift times, and accurate ion masses for the detected features. These separations thereby increased the overall measurement separation power, resulting in greater information content and more complete characterization of the complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by improving isomeric separations and allowing detection of species obscured by interfering peaks.
Collapse
Affiliation(s)
- Xing Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tamizi E, Jouyban A. The potential of the capillary electrophoresis techniques for quality control of biopharmaceuticals-A review. Electrophoresis 2015; 36:831-58. [DOI: 10.1002/elps.201400343] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Elnaz Tamizi
- Biotechnology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Abolghasem Jouyban
- Pharmacy Faculty and Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
13
|
De Smet S, Lynen F. Kinetic performance evaluation and perspectives of contemporary packed column capillary electrochromatography. J Chromatogr A 2014; 1355:261-8. [DOI: 10.1016/j.chroma.2014.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
|
14
|
Bresolin de Souza K, Jutfelt F, Kling P, Förlin L, Sturve J. Effects of increased CO2 on fish gill and plasma proteome. PLoS One 2014; 9:e102901. [PMID: 25058324 PMCID: PMC4109940 DOI: 10.1371/journal.pone.0102901] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.
Collapse
Affiliation(s)
- Karine Bresolin de Souza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Fredrik Jutfelt
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lars Förlin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Zhang F, Chen J, Wang M, Drabier R. A neural network approach to multi-biomarker panel discovery by high-throughput plasma proteomics profiling of breast cancer. BMC Proc 2013; 7:S10. [PMID: 24565503 PMCID: PMC4044889 DOI: 10.1186/1753-6561-7-s7-s10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the past several years, there has been increasing interest and enthusiasm in molecular biomarkers as tools for early detection of cancer. Liquid chromatography tandem mass spectrometry (LC/MS/MS) based plasma proteomics profiling technique is a promising technology platform to study candidate protein biomarkers for early detection of cancer. Factors such as inherent variability, protein detectability limitation, and peptide discovery biases among LC/MS/MS platforms have made the classification and prediction of proteomics profiles challenging. Developing proteomics data analysis methods to identify multi-protein biomarker panels for breast cancer diagnosis based on neural networks provides hope for improving both the sensitivity and the specificity of candidate cancer biomarkers for early detection. RESULTS In our previous method, we developed a Feed Forward Neural Network-based method to build the classifier for plasma samples of breast cancer and then applied the classifier to predict blind dataset of breast cancer. However, the optimal combination C* in our previous method was actually determined by applying the trained FFNN on the testing set with the combination. Therefore, in this paper, we applied a three way data split to the Feed Forward Neural Network for training, validation and testing based. We found that the prediction performance of the FFNN model based on the three way data split outperforms our previous method and the prediction performance is improved from (AUC = 0.8706, precision = 82.5%, accuracy = 82.5%, sensitivity = 82.5%, specificity = 82.5% for the testing set) to (AUC = 0.895, precision = 86.84%, accuracy = 85%, sensitivity = 82.5%, specificity = 87.5% for the testing set). CONCLUSIONS Further pathway analysis showed that the top three five-marker panels are associated with complement and coagulation cascades, signaling, activation, and hemostasis, which are consistent with previous findings. We believe the new approach is a better solution for multi-biomarker panel discovery and it can be applied to other clinical proteomics.
Collapse
|
16
|
D’Orazio G, Fanali S. Pressurized nano-liquid–junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry. J Chromatogr A 2013; 1317:67-76. [DOI: 10.1016/j.chroma.2013.08.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
|
17
|
Kuehnbaum NL, Britz-McKibbin P. New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era. Chem Rev 2013; 113:2437-68. [DOI: 10.1021/cr300484s] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naomi L. Kuehnbaum
- Department of Chemistry
and Chemical Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
18
|
Pioch M, Bunz SC, Neusüss C. Capillary electrophoresis/mass spectrometry relevant to pharmaceutical and biotechnological applications. Electrophoresis 2012; 33:1517-30. [PMID: 22736352 DOI: 10.1002/elps.201200030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advanced analytical techniques play a crucial role in the pharmaceutical and biotechnological field. In this context, capillary electrophoresis/mass spectrometry (CE/MS) has attracted attention due to efficient and selective separation in combination with powerful detection allowing identification and detailed characterization. Method developments and applications of CE/MS have been focused on questions not easily accessible by liquid chromatography/mass spectrometry (LC/MS) as the analysis of intact proteins, carbohydrates, and various small molecules, including peptides. Here, recent approaches and applications of CE/MS relevant to (bio)pharmaceuticals are reviewed and discussed to show actual developments and future prospects. Based on other reviews on related subjects covering large parts of previous works, the paper is focused on general ideas and contributions of the last 2 years; for the analysis of glycans, the period is extended back to 2006.
Collapse
Affiliation(s)
- Markus Pioch
- Chemistry Department, Aalen University, Aalen, Germany
| | | | | |
Collapse
|
19
|
Fanali C, D'Orazio G, Fanali S. Nano‐liquid chromatography and capillary electrochromatography hyphenated with mass spectrometry for tryptic digest protein analysis: A comparison. Electrophoresis 2012; 33:2553-60. [DOI: 10.1002/elps.201200157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chiara Fanali
- Università Campus‐Biomedico Centro Integrato di Ricerca Roma Italy
| | - Giovanni D'Orazio
- Institute of Chemical Methodologies Italian National Research Council Monterotondo (Rome) Italy
| | - Salvatore Fanali
- Institute of Chemical Methodologies Italian National Research Council Monterotondo (Rome) Italy
| |
Collapse
|
20
|
Ramautar R, Heemskerk AAM, Hensbergen PJ, Deelder AM, Busnel JM, Mayboroda OA. CE-MS for proteomics: Advances in interface development and application. J Proteomics 2012; 75:3814-28. [PMID: 22609513 DOI: 10.1016/j.jprot.2012.04.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful technique for the analysis of proteins and peptides. Over the past few years, significant progress has been made in the development of novel and more effective interfaces for hyphenating CE to MS. This review provides an overview of these new interfacing techniques for coupling CE to MS, covering the scientific literature from January 2007 to December 2011. The potential of these new CE-MS interfacing techniques is demonstrated within the field of (clinical) proteomics, more specifically "bottom-up" proteomics, by showing examples of the analysis of various biological samples. The relevant papers on CE-MS for proteomics are comprehensively summarized in tables, including, e.g. information on sample type and pretreatment, interfacing and MS detection mode. Finally, general conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Oracz J, Nebesny E, Zyżelewicz D. New trends in quantification of acrylamide in food products. Talanta 2011; 86:23-34. [PMID: 22063508 DOI: 10.1016/j.talanta.2011.08.066] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/11/2011] [Accepted: 08/28/2011] [Indexed: 12/28/2022]
Abstract
Methods applied in acrylamide quantification in foods have been reviewed in this paper. Novel analytical techniques like capillary electrophoresis (CE), immunoenzymatic test (ELISA) and electrochemical biosensors, which can replace traditional methods like high performance liquid chromatography (HPLC) and gas chromatography (GC) were presented. Short time of analysis and high resolution power of electrophoretic techniques caused that they became routinely used in food analysis apart from high performance liquid chromatography and gas chromatography. Application of modern chromatography methods like ultra performance liquid chromatography (UPLC) in acrylamide quantification considerably shortened the time of analysis and decreased the consumption of indispensable reagents. The most promising approaches to acrylamide quantification in foods are electrochemical biosensors and immunoenzymatic tests. In contrast to chromatography and electrophoretic methods they require neither expensive equipment nor time consuming sample preparation and allow for fast screening of numerous samples without the usage of sophisticated apparatuses. Because of many advantages such as miniaturization, rapid and simple analysis, and high sensitivity and selectivity, biosensors are thought to replace conventional methods of acrylamide quantification in food.
Collapse
Affiliation(s)
- Joanna Oracz
- Faculty of Biotechnology and Food Sciences, Technical University of Lodz, 4/10 Stefanowskiego Street, 90-924 Lodz, Poland.
| | | | | |
Collapse
|
22
|
Chen CJ, Wang CW, Her GR. Fast CEC-MS using poly(dimethylsiloxane) microinjector, short packed column, and low-sheath-flow interface. J Sep Sci 2011; 34:2538-43. [DOI: 10.1002/jssc.201100281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/25/2011] [Accepted: 05/29/2011] [Indexed: 11/11/2022]
|
23
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
24
|
Karlsson G. Development and Application of Methods for Separation of Carbohydrates by Hydrophilic Interaction Liquid Chromatography. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10609-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
25
|
Zhou A, Zhang F, Chen JY. PEPPI: a peptidomic database of human protein isoforms for proteomics experiments. BMC Bioinformatics 2010; 11 Suppl 6:S7. [PMID: 20946618 PMCID: PMC3026381 DOI: 10.1186/1471-2105-11-s6-s7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Ao Zhou
- School of Informatics, Indiana University, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
26
|
Abstract
This review article addresses the developments and applications of capillary electromigration methods coupled on-line with MS for chiral analysis. The multiple enantiomeric applications of this hyphenated technology are covered including chiral analysis of drugs, food compounds, pesticides, natural metabolites, etc. in different matrices such as plasma, urine, medicines, foods, etc. This work intends to provide an updated overview (including works published till September 2009) on the principal chiral applications carried out by CZE-MS, CEC-MS and MEKC-MS, discussing their main advantages and drawbacks in all their different areas of application as well as their foreseeable development in the not too distant future.
Collapse
Affiliation(s)
- Carolina Simó
- Department of Food Analysis, Institute of Industrial Fermentations (CSIC), Madrid, Spain
| | | | | |
Collapse
|
27
|
Gu C, Shamsi SA. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column. Electrophoresis 2010; 31:1162-1174. [PMID: 20349511 DOI: 10.1002/elps.200900739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.
Collapse
Affiliation(s)
- Congying Gu
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
28
|
Aturki Z, D'Orazio G, Rocco A, Bortolotti F, Gottardo R, Tagliaro F, Fanali S. CEC-ESI ion trap MS of multiple drugs of abuse. Electrophoresis 2010; 31:1256-1263. [PMID: 20209571 DOI: 10.1002/elps.200900629] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This article describes a method for the separation and determination of nine drugs of abuse in human urine, including amphetamines, cocaine, codeine, heroin and morphine. This method was based on SPE on a strong cation exchange cartridge followed by CEC-MS. The CEC experiments were performed in fused silica capillaries (100 microm x 30 cm) packed with a 3 mum cyano derivatized silica stationary phase. A laboratory-made liquid junction interface was used for CEC-MS coupling. The outlet capillary column was connected with an emitter tip that was positioned in front of the MS orifice. A stable electrospray was produced at nanoliter per minute flow rates applying a hydrostatic pressure (few kPa) to the interface. The coupling of packed CEC columns with mass spectrometer as detector, using a liquid junction interface, provided several advantages such as better sensitivity, low dead volume and independent control of the conditions used for CEC separation and ESI analysis. For this purpose, preliminary experiments were carried out in CEC-UV to optimize the proper mobile phase for CEC analysis. Good separation efficiency was achieved for almost all compounds, using a mixture containing ACN and 25 mM ammonium formate buffer at pH 3 (30:70, v/v), as mobile phase and applying a voltage of 12 kV. ESI ion-trap MS detection was performed in the positive ionization mode. A spray liquid, composed by methanol-water (80:20, v/v) and 1% formic acid, was delivered at a nano-flow rate of approximately 200 nL/min. Under optimized CEC-ESI-MS conditions, separation of the investigated drugs was performed within 13 min. CEC-MS and CEC-MS(2) spectra were obtained by providing the unambiguous confirmation of these drugs in urine samples. Method precision was determined with RSDs values <or=3.3% for retention times and <or=16.3% for peak areas in both intra-day and day-to-day experiments. LODs were established between 0.78 and 3.12 ng/mL for all compounds. Linearity was satisfactory in the concentration range of interest for all compounds (r(2)>or=0.995). The developed CEC-MS method was then applied to the analysis of drugs of abuse in spiked urine samples, obtaining recovery data in the range 80-95%.
Collapse
Affiliation(s)
- Zeineb Aturki
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma, Monterotondo Scalo, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Coupling capillary electrochromatography with mass spectrometry by using a liquid-junction nano-spray interface. J Chromatogr A 2010; 1217:4079-86. [DOI: 10.1016/j.chroma.2009.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/16/2009] [Accepted: 11/02/2009] [Indexed: 11/23/2022]
|
30
|
Nischang I, Tallarek U. Inherent peak compression of charged analytes in electrochromatography. J Sep Sci 2010; 32:3157-68. [PMID: 19746396 DOI: 10.1002/jssc.200900436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work resolves peak compression of charged analytes in CEC with strong cation-exchange stationary phase particles. By combining electrochromatographic peak shape analysis with the results of numerical simulations and confocal laser scanning microscopy in the packed capillaries, we identify electrical field-induced concentration polarization as the key physical phenomenon responsible for the inherent existence of local electrical field gradients on the scale of an individual support particle. Consequently, positive and negative field gradients exist between and inside the particles along the whole packing. Their intensity depends on the particles cation-selectivity (governed by the particles volume charge density and the mobile phase ionic strength) and the applied field strength. The interplay of these local field gradients with the analytes retention (intraparticle adsorption) determines whether fronting, tailing, or spiked analyte peaks are observed, and it provides a mechanism by which strongly retained analytes can be eluted over long distances with little zone dispersion. Our analysis explains the "anomalous" peak compression effects with strong cation-exchange particles, which have been reported more than a decade ago (Smith, N. W., Evans, M. B., Chromatographia 1995, 41, 197-203) and since then remained largely unresolved.
Collapse
Affiliation(s)
- Ivo Nischang
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
31
|
Svec F. CEC: selected developments that caught my eye since the year 2000. Electrophoresis 2009; 30 Suppl 1:S68-82. [PMID: 19517503 DOI: 10.1002/elps.200900062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the last decade, a number of new developments have emerged in the field of CEC. This paper focuses only on monolithic columns prepared from synthetic polymers. Monolithic columns have become a well-established format of stationary phases for CEC immediately after their inception in the mid-1990s. They are readily prepared in situ from liquid precursors. Also, the control over both porous properties and surface chemistries is easy to achieve. These advantages make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. Since the number of papers concerned with just this single topic of polymer-based monolithic CEC columns is large, this overview describes only those approaches this author found interesting.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8197, USA.
| |
Collapse
|
32
|
Lu M, Zhang L, Lu Q, Chi Y, Chen G. Rapid analysis of peptides and amino acids by CE-ESI-MS using chemically modified fused-silica capillaries. Electrophoresis 2009; 30:2273-9. [DOI: 10.1002/elps.200800683] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Bragg W, Norton D, Shamsi SA. Optimized separation of beta-blockers with multiple chiral centers using capillary electrochromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 875:304-16. [PMID: 18619928 DOI: 10.1016/j.jchromb.2008.06.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/06/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
This work focuses on the simultaneous analysis of beta-blockers with multiple stereogenic centers using capillary electrochromatography-mass spectrometry (CEC-MS) with a vancomycin stationary phase. The critical mobile phase variables (composition of organic solvents, acid/base ratios) as well as column temperature and electric field strength, effecting enantioresolution and analysis time were first optimized sequentially. Next, to achieve global optimum a multivariate D-optimal design was used. Although multivariate approach did not improve enantioresolution any further, analysis time was significantly reduced. Under optimum CEC-MS conditions, all stereoisomers were resolved with resolution in the range 1.0-3.1 in less than 60 min with an average signal-to-noise (S/N) greater than 1000. The developed CEC-MS method has the potential to emerge as a screening method for analysis of multiple chiral compounds using a single protocol using the same column and mobile phase conditions, thus reducing the operation time and cost.
Collapse
Affiliation(s)
- William Bragg
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
34
|
Lokhov PG, Archakov AI. Mass spectrometry methods in metabolomics. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Shi ZG, Wei F, Feng YQ. A Novel Approach to Prepare a Glass-Fiber-Packed Capillary Column for Capillary Electrochromatography. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802480008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhi-Guo Shi
- a Department of Chemistry, Wuhan University , Wuhan, P. R. China
| | - Fang Wei
- a Department of Chemistry, Wuhan University , Wuhan, P. R. China
| | - Yu-Qi Feng
- a Department of Chemistry, Wuhan University , Wuhan, P. R. China
| |
Collapse
|
36
|
Varenne A, Descroix S. Recent strategies to improve resolution in capillary electrophoresis—A review. Anal Chim Acta 2008. [DOI: 10.1016/j.aca.2008.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Norton D, Shamsi SA. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase. Electrophoresis 2008; 29:2004-15. [PMID: 18425746 DOI: 10.1002/elps.200700460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The preparation and characterization of a novel lithocholic acid (LCA)-based liquid crystalline (LC) stationary phase (SP) suitable for application in packed-column CEC and CEC coupled to MS is described. The extent of bonding reactions of LCA-SP was assessed using 1H-NMR, 13C-NMR and elemental analysis. This characterization is followed by application of the LCA-SP for separation of beta-blockers, phenylethylamines (PEAs), polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Using the optimum mobile phase operating conditions (pH 3.0-4.5, 10 mM ammonium acetate, 85% v/v ACN), a comparison of the chromatographic ability of the aminopropyl silica phase vs. the LCA-bonded phase was conducted. The results showed improved selectivity for all test analytes using the latter phase. For example, the CEC-MS of beta-blockers demonstrated that the LCA-bonded phase provides separation of six out of seven beta-blockers, whereas the amino silica phase provides four peaks of several co-eluting beta-blockers. For the CEC-MS analysis of PEAs, the LCA-bonded phase showed improved resolution and different selectivity as compared to the aminopropyl phase. An evaluation of the retention trends for PEAs on both phases suggested that the PEAs were retained based on varying degree of hydroxyl substitution on the aromatic ring. In addition, the MS characterization shows several PEAs fragment in the electrospray either by loss of an alkyl group and/or by loss of H2O. Finally, the LCA-bonded phase displayed significantly higher separation selectivity for PAHs and PCBs as compared to the amino silica phase.
Collapse
|
38
|
Rapid separation and sensitive detection method for β-blockers by pressure-assisted capillary electrochromatography–electrospray ionization mass spectrometry. J Chromatogr A 2008; 1193:156-63. [DOI: 10.1016/j.chroma.2008.03.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/20/2022]
|
39
|
Abstract
Capillary electrochromatography (CEC) is a micro-separation technique that combines the advantages of capillary zone electrophoresis with those of high-performance liquid chromatography. Accordingly, it has attracted extensive attention over the last decade. Among the stationary phases for CEC, monolithic stationary phase has been regarded as the most suitable stationary phase for CEC because of its simple preparation, the elimination of frits, and its excellent performance. In this chapter, procedures for preparing CEC monolithic columns with an improved configuration, in which there are stationary phases at both sides of detection window and no stationary phase at detection window, are presented. The separation of acidic and basic compounds on such monolithic columns is used as an example to demonstrate CEC separation protocol. Additionally, an on-line concentration technique in CEC is presented. As a result of the coexistence of stationary phase and electric field in a CEC column, it is possible to employ chromatographic zone sharpening and field-amplified sample stacking effects simultaneously to improve CEC detection sensitivity.
Collapse
|
40
|
Herrero M, Ibañez E, Cifuentes A. Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 2008; 29:2148-60. [DOI: 10.1002/elps.200700404] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Lu M, Zhang L, Feng Q, Xia S, Chi Y, Tong P, Chen G. Pressure-assisted capillary electrochromatography with electrospray ionization-mass spectrometry based on silica-based monolithic column for rapid analysis of narcotics. Electrophoresis 2008; 29:936-43. [DOI: 10.1002/elps.200700653] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Gaspar A, Englmann M, Fekete A, Harir M, Schmitt-Kopplin P. Trends in CE-MS 2005–2006. Electrophoresis 2008; 29:66-79. [DOI: 10.1002/elps.200700721] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
18 Coupling CE and microchip-based devices with mass spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0149-6395(07)00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Norton D, Shamsi SA. Capillary Electrochromatography−Mass Spectrometry of Nonionic Surfactants. Anal Chem 2007; 79:9459-70. [DOI: 10.1021/ac071124y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dean Norton
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303
| | - Shahab A. Shamsi
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
45
|
Timerbaev AR. Recent trends in CE of inorganic ions: From individual to multiple elemental species analysis. Electrophoresis 2007; 28:3420-35. [PMID: 17768723 DOI: 10.1002/elps.200600491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The major methodological developments in CE related to inorganic analysis are overviewed. This is an update to a previous review article by the author (Timerbaev, A. R., Electrophoresis 2004, 25, 4008-4031) and it covers the review work and innovative research papers published between January 2004 and the first part of 2006. As was underlined in that review, a growing interest of analytical community in providing elemental speciation information found a sound response of the CE method developers. Presently, almost every second research paper in the field of interest deals with element species analysis, the use of inductively coupled plasma MS detection and biochemical applications being the topics of utmost research efforts. On the other hand, advances in general methodology traditionally centered on a CE system modernization for improvements in sensitivity and separation selectivity have attracted less attention over the review period. While there is no indication that inorganic ion applications would surpass by the developmental rate the more matured analysis of organic analytes, CE can now be seen as an analytical technique to be before long customary in a number of inorganic analysis arenas.
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
46
|
Abstract
This review summarizes applications of CEC for the analysis of proteins and peptides. This "hybrid" technique is useful for the analysis of a broad spectrum of proteins and peptides and is a complementary approach to liquid chromatographic and capillary electrophoretic analysis. All modes of CEC are described--granular packed columns, monolithic stationary phases as well as open-tubular CEC. Attention is also paid to pressurized CEC and the chip-based platform.
Collapse
Affiliation(s)
- Ivan Miksík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
47
|
Yang Y, Boysen RI, Matyska MT, Pesek JJ, Hearn MTW. Open-Tubular Capillary Electrochromatography Coupled with Electrospray Ionization Mass Spectrometry for Peptide Analysis. Anal Chem 2007; 79:4942-9. [PMID: 17539599 DOI: 10.1021/ac0622633] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the open-tubular electrochromatographic (OT-CEC) migration behavior of various peptides has been characterized using etched and chemically (n-octadecyl- and cholesterol-) modified capillaries, interfaced to an electrospray ionization mass spectrometer through a sheath liquid configuration. The stationary phases were fabricated by etching the inner wall of the fused-silica capillary and then chemically modifying the new surface through a silanization/hydrosilation reaction. Unlike some other OT-CEC stationary-phase preparation methods, leaching of the immobilized stationary phase and subsequent contamination of the electrospray ion source was largely avoided with this novel surface modification technology. The influence of the immobilized organic phases and those of the buffer electrolytes (pH, the type and content of organic solvent) on the retention and separation of the selected peptides was investigated. Significant peptide retention was found even at very low pH with both types of stationary phases, under conditions whereby the electrophoretic migration dominated the separation process. Due to the effective coverage of the etched surface by a silanization/hydrosilation reaction, adverse adsorption of charged analytes onto the capillary wall was minimized. As a result, very efficient and highly reproducible peptide separations were achieved over a broad pH range. Moreover, peptide-specific multizoning effects were observed. The origin of this novel phenomenon was explored. Compared to capillary electrophoresis electrospray ionization mass spectrometry system, much higher detection sensitivity could be obtained, since a larger amount of sample could be injected and stacked at the head of the open-tubular capillary column without deteriorating the separation performance. On the basis of these observations, these procedures have been adapted to allow the analysis of tryptic peptides generated from proteins.
Collapse
Affiliation(s)
- Yuanzhong Yang
- Australian Research Council Special Research Centre for Green Chemistry, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
48
|
Abstract
This review is concerned with the phenomenological fluid dynamics in capillary and chip electrochromatography (EC) using high-surface-area random porous media as stationary phases. Specifically, the pore space morphology of packed beds and monoliths is analyzed with respect to the nonuniformity of local and macroscopic EOF, as well as the achievable separation efficiency. It is first pointed out that the pore-level velocity profile of EOF through packed beds and monoliths is generally nonuniform. This contrasts with the plug-like EOF profile in a single homogeneous channel and is caused by a nonuniform distribution of the local electrical field strength in porous media due to the continuously converging and diverging pores. Wall effects of geometrical and electrokinetic nature form another origin for EOF nonuniformities in packed beds which are caused by packing hard particles against a hard wall with different zeta potential. The influence of the resulting, systematic porosity fluctuations close to the confining wall over a distance of a few particle diameters becomes aggravated at low column-to-particle diameter ratio. Due to the hierarchical structure of the pore space in packed beds and silica-based monoliths which are characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains, charge-selective transport prevails within the porous particles and the monolith skeleton under most general conditions. It forms the basis for electrical field-induced concentration polarization (CP). Simultaneously, a finite and -- depending on morphology -- often significant perfusive EOF is realized in these hierarchically structured materials. The data collected in this review show that the existence of CP and its relative intensity compared to perfusive EOF form fundamental ingredients which tune the fluid dynamics in EC employing monoliths and packed beds as stationary phases. This addresses the (electro)hydrodynamics, associated hydrodynamic dispersion, as well as the migration and retention of charged analytes.
Collapse
Affiliation(s)
- Ivo Nischang
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | |
Collapse
|
49
|
Mora MF, García CD. Electrophoretic separation of environmentally important phenolic compounds using montomorillonite-coated fused-silica capillaries. Electrophoresis 2007; 28:1197-203. [PMID: 17366482 DOI: 10.1002/elps.200600493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper reports a simple procedure for coating fused-silica capillaries with poly(diallyldimethyl ammonium chloride) and montmorillonite. The coated capillaries were characterized by performing EOF measurements as a function of buffer pH, number of layers of coating, and number of runs (stability). The coated capillaries showed a highly stable mu(EOF) (run-to-run RSD less than 1.5%, n = 20), allowing continuous use for several days without conditioning. The coated capillaries were then used for the effective separation of nine environmentally important phenolic compounds showing a significant improvement in the resolution, when compared to bare fused-silica capillaries. The EOF of the coated capillaries was constant in alkaline solutions (pH > or = 7), allowing the optimization of the separation conditions of phenolic compounds without significantly affecting the mu(EOF).
Collapse
Affiliation(s)
- Maria F Mora
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
50
|
Klampfl CW, Buchberger W. Coupling of capillary electroseparation techniques with mass spectrometric detection. Anal Bioanal Chem 2007; 388:533-6. [PMID: 17351706 DOI: 10.1007/s00216-007-1221-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Affiliation(s)
- Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Str. 69, 4040, Linz, Austria.
| | | |
Collapse
|