1
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:35-57. [PMID: 36568503 PMCID: PMC9768793 DOI: 10.1007/s40005-022-00610-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Background Most biopharmaceuticals are developed in liquid dosage forms that are less stable than solid forms. To ensure the stability of biopharmaceuticals, it is critical to use an effective drying technique in the presence of an appropriate stabilizing excipient. Various drying techniques are available for this purpose, such as freeze drying or lyophilization, spray drying, spray freeze-drying, supercritical fluid drying, particle replication in nonwetting templates, and fluidized bed drying. Area covered In this review, we discuss drying technologies and their applications in the production of stable solid-state biopharmaceuticals, providing examples of commercially available products or clinical trial formulations. Alongside this, we also review how different analytical methods may be utilized in the evaluation of aerosol performance and powder characteristics of dried protein powders. Finally, we assess the protein integrity in terms of conformational and physicochemical stability and biological activity. Expert opinion With the aim of treating either infectious respiratory diseases or systemic disorders, inhaled biopharmaceuticals reduce both therapeutic dose and cost of therapy. Drying methods in the presence of optimized protein/stabilizer combinations, produce solid dosage forms of proteins with greater stability. A suitable drying method was chosen, and the process parameters were optimized based on the route of protein administration. With the ongoing trend of addressing deficiencies in biopharmaceutical production, developing new methods to replace conventional drying methods, and investigating novel excipients for more efficient stabilizing effects, these products have the potential to dominate the pharmaceutical industry in the future.
Collapse
|
3
|
|
4
|
Boccardo A, Belloli A, Biffani S, Locatelli V, Dall'Ara P, Filipe J, Restelli I, Proverbio D, Pravettoni D. Intravenous immunoglobulin transfusion in colostrum-deprived dairy calves. Vet J 2016; 209:93-7. [DOI: 10.1016/j.tvjl.2015.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 11/24/2022]
|
5
|
Paul AJ, Schwab K, Hesse F. Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 2014; 14:99. [PMID: 25431119 PMCID: PMC4256052 DOI: 10.1186/s12896-014-0099-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Protein aggregation during monoclonal antibody (mAb) production can occur in upstream and downstream processing (DSP). Current methods to determine aggregate formation during cell culture include size exclusion chromatography (SEC) with a previous affinity chromatography step in order to remove disturbing cell culture components. The pre-purification step itself can already influence protein aggregation and therefore does not necessarily reflect the real aggregate content present in cell culture. To analyze mAb aggregate formation directly in the supernatant of Chinese hamster ovary (CHO) cell culture, we established a protocol, which allows aggregate quantification using SEC, without a falsifying pre-purification step. Results The use of a 3 μm silica SEC column or a SEC column tailored for mAb aggregate analysis allows the separation of mAb monomer and aggregates from disturbing cell culture components, which enables aggregate determination directly in the supernatant. Antibody aggregate analysis of a mAb-producing CHO DG44 cell line demonstrated the feasibility of the method. Astonishingly, the supernatant of the CHO cells consisted of over 75% mAb dimer and larger oligomers, representing a substantially higher aggregate content than reported in literature so far. Conclusion This study highlights that aggregate quantification directly in the cell culture supernatant using appropriate SEC columns with suitable mAb aggregate standards is feasible without falsification by previous affinity chromatography. Moreover, our results indicate that aggregate formation should be addressed directly in the cell culture and is not only a problem in DSP. Electronic supplementary material The online version of this article (doi:10.1186/s12896-014-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert J Paul
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| | - Karen Schwab
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| | - Friedemann Hesse
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| |
Collapse
|
6
|
Jayaraman M, Buck PM, Alphonse Ignatius A, King KR, Wang W. Agitation-induced aggregation and subvisible particulate formation in model proteins. Eur J Pharm Biopharm 2014; 87:299-309. [DOI: 10.1016/j.ejpb.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
7
|
Second Osmotic Virial Coefficients and Aggregation of Monoclonal Antibodies by Static Laser Light Scattering. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The second osmotic virial coefficient and the apparent molar mass of two human and one mouse monoclonal antibodies were measured in different aequeous buffer solutions which also contained sodium chloride or ammonium sulfate, respectively, by static laser light scattering in batch mode. The apparent molar mass indicates aggregation. At a constant pH value of 6.5 the sodium chloride concentration was varied from 0 to 2 M and the ammonium sulfate concentration from 0 to 0.8 M, respectively. A 20 mM sodium-phosphate buffer was used for all experiments. Furthermore the pH value was varied without adding additional salt from 4.5 to 10. The results of the salt dependency are in line with the Hofmeister-series. The results of the pH dependency correspond to the net charge of the molecules.
Collapse
|
8
|
Tan X, Rang WQ, Wang YS, Yang HX, Xue JH, Shi LF, Yang HM, Liu L, Zhou B. Determination of Semicarbazide-Sensitive Amine Oxidase Activity in Blood Plasma by a Light Scattering Technique. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.703738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Dhainaut F, Guillaumat PO, Dib H, Perret G, Sauger A, de Coupade C, Beaudet M, Elzaabi M, Mouthon L. In vitro and in vivo properties differ among liquid intravenous immunoglobulin preparations. Vox Sang 2012; 104:115-26. [PMID: 23003576 PMCID: PMC3580880 DOI: 10.1111/j.1423-0410.2012.01648.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective To compare in vitro and in vivo biological and biochemical properties of five liquid intravenous immunoglobulin (IVIg) preparations licensed for therapeutic use in Europe. Methods ClairYg® was compared in a blinded manner to four other liquid IVIg preparations licensed in Europe (Octagam®, Kiovig®, Gamunex®, Privigen®). Three batches of each preparation were tested, except for the IgG repertoires and the animal model. Results Levels of anti-A and anti-B antibodies were lower in ClairYg® (0·11/0·11) relative to a positive EDQM standard and Octagam® (0·11/0·08) than in other preparations (0·33–0·69/0·42–0·46). IgG in ClairYg® recognized 365 and 416 protein spots in HEp-2 cell and Escherichia coli protein extracts vs. 230–330 and 402–842 protein spots, respectively, for IgG in other preparations. IgA content (301 vs. 165–820 ng/mg of IgG), Factor XI and Factor XII antigen (0·46 vs. 0·85–2·40 mU/mg of IgG and 7·8 vs. 20·0–46·2 lU/mg of IgG) C1q binding (0·42 vs. 0·67–1·89 arbitrary units) and C5a uptake (0·41 vs. 0·45–0·66% of activation) were lower in ClairYg® than in other preparations. Finally, intravenous infusion of ClairYg®, Gamunex® and Privigen® had no major effect on arterial blood pressure in spontaneously hypertensive rats. Conclusions Our results evidence some differences in the biological and biochemical properties among licensed liquid IVIg preparations.
Collapse
Affiliation(s)
- F Dhainaut
- LFB Biotechnologies, Courtaboeuf, France Université Paris Descartes, Faculté de Médecine, Institut Cochin, INSERM U1016, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 2012; 9:696-707. [PMID: 22263524 DOI: 10.1021/mp200404c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formulation development of monoclonal antibodies is extremely challenging, due to the diversity and complexity contained within this class of molecules. The physical and chemical properties of a monoclonal antibody dictate the behavior of the protein drug during manufacturing, storage and clinical administration. In the past few years, the use of high throughput technologies has been widely adapted to delineate unique properties of individual immunoglobulin G's (IgG's) important for their development. Numerous screening techniques have been designed to reveal physical and chemical characteristics of a protein relevant to stability under production, formulation and delivery conditions. In addition, protein stability under accelerated stresses has been utilized to predict long-term storage behavior for monoclonal antibodies in the formulation. In this review, we summarize the recent advancements in the field of biophysical technology, with a specific focus on the techniques that can be directly applied to the formulation development of monoclonal antibodies. Several case studies are also presented here to provide examples of combining existing biophysical methods with high throughput screening technology in the formulation development of monoclonal antibody drugs.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Formulation Sciences, MedImmune , One MedImmune Way, Gaithersburg, Maryland 20878, USA.
| | | |
Collapse
|
11
|
Lajmi AR, Nochumson S, Berges A. Impact of antibody aggregation on a flowthrough anion-exchange membrane process. Biotechnol Prog 2010; 26:1654-61. [DOI: 10.1002/btpr.483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Horak J, Hofer S, Lindner W. Optimization of a ligand immobilization and azide group endcapping concept via “Click-Chemistry” for the preparation of adsorbents for antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3382-94. [DOI: 10.1016/j.jchromb.2010.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 11/15/2022]
|
13
|
Jans H, Jans K, Stakenborg T, Van de Broek B, Lagae L, Maes G, Borghs G. Impact of pre-concentration to covalently biofunctionalize suspended nanoparticles. NANOTECHNOLOGY 2010; 21:345102. [PMID: 20683138 DOI: 10.1088/0957-4484/21/34/345102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effective biofunctionalization of nanoparticles is crucial for biomedical applications. In this study we investigated the covalent biofunctionalization of magnetic nanoparticles based on carbodiimide activation. An important aspect in the covalent biofunctionalization of nanoparticles has been neglected, namely pre-concentration. Exploiting the electrostatic attraction forces between a protein and the nanoparticle surface will favor the covalent immobilization. We showed that low ionic strength buffers with a pH slightly lower than the pI of the selected biomolecules is needed to increase the yield of covalent immobilization. Additionally, it is demonstrated that the covalently immobilized proteins are bioactive, relying on a sandwich assay using gold nanoparticles as reporter labels.
Collapse
Affiliation(s)
- H Jans
- Imec, SSET/Functional Nanosystems, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 2010; 76:351-6. [PMID: 20719247 DOI: 10.1016/j.ejpb.2010.08.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
This study of highly concentrated polyvalent immunoglobulin solutions, IgG, aimed at analyzing the relationships between protein concentration and aggregation on the one hand and viscosity on the other hand. Viscosity variations as a function of IgG concentration showed two well-defined behaviours: a Newtonian behaviour for low-concentrated solutions and a shear-thinning behaviour for highly concentrated ones. The viscosity data fitted very well with the Mooney model, suggesting the absence of intermolecular interactions in the IgG solutions that behaved like a non-interacting suspension of hard particles. The polyclonal nature of IgG seems to prevent intermolecular interaction. The shape factor, determined from Mooney fitting, revealed a non-spherical shape of the polyclonal IgG molecules. The rheological properties were also correlated with the injection force (F) through hypodermic needles by syringeability tests. Here, F was mainly affected by three parameters: the solution viscosity, the injection flow rate, and the needle characteristics. In fact, syringeability tests showed that F increased with IgG concentration and flow rate and decreased with the internal diameter of the needle. A zone for optimal injection conditions was then identified taking into account the different affecting parameters and mainly a maximum force for manual injection, which was fixed at 30N.
Collapse
Affiliation(s)
- V Burckbuchler
- Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8612, Châtenay-Malabry Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh C, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: Essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 2010; 99:2200-8. [DOI: 10.1002/jps.21989] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Buchacher A, Schluga P, Müllner J, Schreiner M, Kannicht C, Weinberger J. Anticomplementary activity of IVIG concentrates - important assay parameters and impact of IgG polymers. Vox Sang 2010; 98:e209-18. [DOI: 10.1111/j.1423-0410.2009.01271.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci 2009; 98:3013-30. [PMID: 18680168 DOI: 10.1002/jps.21514] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two major aggregation pathways observed in an IgG2 molecule are described. Different aggregate species generated by long-term incubation of the antibody at 37 degrees C were collected by a semi-preparative size exclusion chromatography method. These purified species were analyzed extensively by denaturing size-exclusion chromatography methods. The major aggregation pathway at low pH (4.0) resulted in the formation of both dimers and high molecular weight (HMW) aggregates. It was found that these dimers and HMW aggregates contain antibody molecules that have a peptide bond cleavage between an aspartic acid and proline residue in the CH2 domain. Evidence that unfolding of the CH2 domain may be driving the aggregation at low pH is presented. At higher pH (pH - 6.0), formation of a dimer having approximately 75% covalent character was the major aggregation pathway while formation of higher molecular weight aggregates were largely suppressed. The covalent dimer consisted of both disulfide linked antibody molecules and another species (approximately 26%) that was formed due to nondisulfide covalent bonds between two heavy chains. At pH - 5.0, both dimer and higher molecular weight aggregates were formed and the aggregation pathway was a combination of the major pathways observed at pH - 4.0 and 6.0. The dimer species formed at pH - 5.0 had a larger contribution from covalent species-both disulfide and nondisulfide linked, while the HMW aggregate contained a higher percentage of molecules that had the peptide bond cleavage in the CH2 domain. The dimer formed at pH - 6.0 was found to have identical secondary and tertiary structure as the intact antibody molecule. However, the dimer and higher molecular weight aggregate formed at pH - 4.0 have altered secondary and tertiary structure.
Collapse
Affiliation(s)
- Nicholas Van Buren
- Analytical and Formulation Sciences, Amgen Inc., 1201 Amgen Ct. W, Seattle, WA 98119, USA
| | | | | | | | | |
Collapse
|
18
|
Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 2009; 98:2909-34. [PMID: 18823031 DOI: 10.1002/jps.21566] [Citation(s) in RCA: 630] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Control and analysis of protein aggregation is an increasing challenge to pharmaceutical research and development. Due to the nature of protein interactions, protein aggregation may occur at various points throughout the lifetime of a protein and may be of different quantity and quality such as size, shape, morphology. It is therefore important to understand the interactions, causes and analyses of such aggregates in order to control protein aggregation to enable successful products. This review gives a short outline of currently discussed pathways and induction methods for protein aggregation and describes currently employed set of analytical techniques and emerging technologies for aggregate detection, characterization and quantification. A major challenge for the analysis of protein aggregates is that no single analytical method exists to cover the entire size range or type of aggregates which may appear. Each analytical method not only shows its specific advantages but also has its limitations. The limits of detection and the possibility of creating artifacts through sample preparation by inducing or destroying aggregates need to be considered with each method used. Therefore, it may also be advisable to carefully compare analytical results of orthogonal methods for similar size ranges to evaluate method performance.
Collapse
Affiliation(s)
- Hanns-Christian Mahler
- Formulation R&D Biologics, Pharmaceutical and Analytical R&D, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | |
Collapse
|
19
|
Le Brun V, Friess W, Schultz-Fademrecht T, Muehlau S, Garidel P. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: Impact for physical protein stabilization. Biotechnol J 2009; 4:1305-19. [DOI: 10.1002/biot.200800274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Uygun DA, Uygun M, Karagözler A, Öztürk N, Akgöl S, Denizli A. A novel support for antibody purification: Fatty acid attached chitosan beads. Colloids Surf B Biointerfaces 2009; 70:266-70. [DOI: 10.1016/j.colsurfb.2008.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/30/2022]
|
21
|
Studying the formation of aggregates in recombinant human granulocyte-colony stimulating factor (rHuG-CSF), lenograstim, using size-exclusion chromatography and SDS-PAGE. ACTA PHARMACEUTICA 2008; 58:199-206. [PMID: 18515229 DOI: 10.2478/v10007-008-0003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stability of proteins is a subject of intense current interest. Aggregation, as a dominant degradation pathway for therapeutic proteins, may cause multiple adverse effects, including loss of efficacy and immunogenicity. In the present study, the formation of aggregates in lenograstim under physiological conditions was monitored. For this purpose, a simple and selective size-exclusion high-performance liquid chromatography method for detection and separation of aggregates from intact protein was developed. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was performed under reducing and non-reducing conditions to determine the nature of aggregate bond formation. Using both techniques, the presence of a low aggregate content attached via disulfide bonds was detected.
Collapse
|
22
|
Tao Y, Zhang L. Determination of molecular size and shape of hyperbranched polysaccharide in solution. Biopolymers 2006; 83:414-23. [PMID: 16845668 DOI: 10.1002/bip.20572] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chemical structure of a water-soluble polysaccharide, coded as TM3b, extracted from sclerotia of Pleurotus tuber-rigium was analyzed to be a hyperbranched beta-D-glucan with beta-(1-->6), beta-(1-->4), and beta-(1-->3)-linked residues, with degree of branching (DB) of 57.6%. The results from size-exclusion chromatography combined with laser light scattering (SEC-LLS) revealed that the hyperbranched polysaccharide easily aggregated in 0.15 M aqueous NaCl, whereas it dispersed as individual chains in DMSO. The weight-average molecular weight (M(w)), radius of gyration, intrinsic viscosity, and chain density of TM3b in DMSO and in 0.15 M aqueous NaCl were measured with SEC-LLS, LLS, and viscometry. The results indicated that single chains and aggregates with aggregation number of 12 coexisted in the aqueous solution, whereas individual molecules of TM3b occurred in DMSO. In view of the molecular parameters, the aggregates in aqueous solution exhibited more compact chain structure than the individual molecules in DMSO. Furthermore, transmission electron microscopy and atomic force microscopy showed that all of the aggregates and individual molecules exhibited spherical particles in the solutions. This work provided the valuable information of chain conformation and molecular morphology of the hyperbranched polysaccharide in different solvents.
Collapse
Affiliation(s)
- Yongzhen Tao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
23
|
Ahrer K, Buchacher A, Iberer G, Jungbauer A. Effects of ultra-/diafiltration conditions on present aggregates in human immunoglobulin G preparations. J Memb Sci 2006. [DOI: 10.1016/j.memsci.2005.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Buchacher A, Iberer G. Purification of intravenous immunoglobulin G from human plasma – aspects of yield and virus safety. Biotechnol J 2006; 1:148-63. [PMID: 16892245 DOI: 10.1002/biot.200500037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasma-derived intravenous immunoglobulin (IVIG) preparations have been successfully applied for the prophylactic prevention of infectious diseases in immunodeficient patients. In addition to its replacement therapy of primary and secondary antibody deficiencies, IVIG has found increased use in autoimmune and inflammatory diseases. IVIG has become the major plasma product on the global blood product market. The world wide consumption nearly tripled between 1992 and 2003, from 19.4 to 52.6 tons. Classical manufacturing processes of IVIG, but also new strategies for purification are discussed with respect to practicability and yield. Ethanol fractionation is still the basis for most IVIG processes, although isolation and purification of immunoglobulin G (IgG) by chromatography has gained ground. The efficiency of virus inactivation methods and virus removal techniques in terms of logarithmic reduction factors are analyzed, but also the IgG losses are taken into consideration. Some of these methods also have the ability to separate prions. High pathogen safety and high yields have become the dominant goals of the plasma fractionation industry.
Collapse
Affiliation(s)
- Andrea Buchacher
- Octapharma Pharmazeutika Produktions GmbH, Oberlaaerstrasse 235, 1100 Vienna, Austria.
| | | |
Collapse
|
25
|
Ahrer K, Buchacher A, Iberer G, Jungbauer A. Thermodynamic stability and formation of aggregates of human immunoglobulin G characterised by differential scanning calorimetry and dynamic light scattering. ACTA ACUST UNITED AC 2006; 66:73-86. [PMID: 16458360 DOI: 10.1016/j.jbbm.2005.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
The final process step of polyclonal human immunoglobulin G is formulation with agents such as sugars, polyols, amino acid and salts. Often the most stable formulations were empirically identified. Physicochemical methods, such as differential scanning calorimetry and dynamic light scattering, provide a deeper insight on the biophysical properties of such a protein solution. The combination of these methods proved to be sensitive enough to detect fine differences in the properties relevant for the development of stable protein solutions. The influence of additives, such as maltose and glycine in combination with water or low concentrations of salts, on human immunoglobulin preparations was analysed. Differential scanning calorimetry illustrated that 0.2 M glycine had better stabilising effects compared to 10% maltose. Dynamic light scattering and differential scanning calorimetry revealed that solutions preventing aggregation were not optimal in terms of thermodynamic stability. Aggregation was minimised with increasing ionic strength, shown by dynamic light scattering, whereas thermodynamic stability for heat sensitive parts of human immunoglobulin G, analysed with differential scanning calorimetry, was decreased.
Collapse
Affiliation(s)
- Karin Ahrer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|