Cinnamomeoventrolide - Double Bond Regioisomerism in Frog Semiochemicals.
J Chem Ecol 2022;
48:531-545. [PMID:
35804278 PMCID:
PMC9375755 DOI:
10.1007/s10886-022-01370-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Frogs of the families Mantellinae and Hyperoliidae possess male specific femoral or gular glands that are used during courtship. These glands release volatile compounds, e. g. the macrocyclic lactone gephyromantolide A (2,6,10-trimethyl-6-undecen-11-olide) in the case of Gephyromantis boulengeri (Mantellinae). During the analysis of the volatiles of Hyperolius cinnamomeoventris (Hyperoliidae) we detected an unknown compound A, which we called cinnamomeoventrolide, whose mass spectrum showed high similarity with the spectrum of gephyromantolide A. Nevertheless, slight spectral differences led to the proposal of a regioisomer of gephyromantolide A as a structure for A, 2,6,10-trimethyl-5-undecen-11-olide. A versatile synthesis of this compound was developed to allow access to all four stereoisomers from a single chiral starting material, the so-called (S)-Roche ester, using ring-closing metathesis as a key step. With these stereoisomers, the absolute configuration of the natural product was established to have the (2R,10S)-configuration by GC on a chiral phase. The configuration of natural gephyromantolide A is the opposite. Both frogs seem to use a similar biosynthetic pathway to access the target compounds, differing in the stereochemistry of the reduction steps, and requiring an additional isomerization in case of G. boulengeri. This unique regioisomeric differentiation of double bonds in semiochemicals has so far only been observed in insects. The compounds are likely to play a role in species-recognition of the frogs.
Collapse